Dynamic Membership for Regular Tree Languages

Antoine Amarilli, Corentin Barloy, Louis Jachiet, Charles Paperman

a b a a b a b a ∉ Even

ightarrow use auxiliary data structures

a b a a b a b a ∉ Even

- \rightarrow use auxiliary data structures
 - \rightarrow for Even: flip a bit

a b a a b a b a ∉ Even

- → use auxiliary data structures
 - \rightarrow for Even: flip a bit
- \rightarrow Here: RAM model with linear preprocessing

a b a a b a b a ∉ Even

- → use auxiliary data structures
 - \rightarrow for Even: flip a bit
- \rightarrow Here: RAM model with linear preprocessing
 - \rightarrow What is the time needed to recompute membership?

a b a a b a b a ∉ Even

- → use auxiliary data structures
 - \rightarrow for Even: flip a bit
- → Here: RAM model with linear preprocessing
 - \rightarrow What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language *L* can either be maintained in:

- constant time
- $ightharpoonup \Theta(\log\log(n))$ time. (Conditional)
- $ightharpoonup \Theta(\log(n)/\log\log(n))$ time

- → use auxiliary data structures
 - \rightarrow for Even: flip a bit
- → Here: RAM model with linear preprocessing
 - \rightarrow What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language *L* can either be maintained in:

- constant time
- $ightharpoonup \Theta(\log\log(n))$ time. (Conditional)
- $ightharpoonup \Theta(\log(n)/\log\log(n))$ time
- \rightarrow based on algebraic properties

- → use auxiliary data structures
 - \rightarrow for Even: flip a bit
- → Here: RAM model with linear preprocessing
 - \rightarrow What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language *L* can either be maintained in:

- constant time
- $ightharpoonup \Theta(\log\log(n))$ time. (Conditional)
- $ightharpoonup \Theta(\log(n)/\log\log(n))$ time
- → based on algebraic properties
- → Decidable

Forest languages

→ Labelled ordered unranked forests

 \notin Antichain

→ Labelled ordered unranked forests

→ Fixed structure

- → Fixed structure
- \rightarrow Technicality: presence of neutral letter (here b)

- → Fixed structure
- \rightarrow Technicality: presence of neutral letter (here b)

- → Fixed structure
- \rightarrow Technicality: presence of neutral letter (here b)

→ Labelled ordered unranked forests

a a \in Antichain

- → Fixed structure
- \rightarrow Technicality: presence of neutral letter (here b)

→ Labelled ordered unranked forests

a a \in Antichain

- → Fixed structure
- \rightarrow Technicality: presence of neutral letter (here b)
- \rightarrow No proven trichotomy

→ Labelled ordered unranked forests

a a \in Antichain

- → Fixed structure
- \rightarrow Technicality: presence of neutral letter (here b)
- → No proven trichotomy

Theorem (this talk)

- ▶ All regular languages of forests can be maintained in $O(\log(n)/\log\log(n))$ time
- ► There is a decidable characterization of regular languages of forests that can be maintained in constant time

finite word automaton \approx finite monoid (M, \cdot)

finite word automaton

finite set associative operation

 \approx

finite monoid (M, \cdot)

finite monoid (M, \cdot)

finite word automaton

finite set associative operation

Take $\mu \colon \{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$

finite set associative operation

finite word automaton

$$\approx$$

finite monoid (M, \cdot)

Take
$$\mu \colon \{a,b\} \to M$$
 extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by $\mu \colon L = \mu^{-1}(P)$ for $P \subseteq M$

finite set associative operation

finite word automaton

finite monoid (M, \cdot)

recognize same languages

Take
$$\mu: \{a, b\} \to M$$
 extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$

 \rightarrow *L* recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite set associative operation

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu$$
: $\{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton \approx finite ???

finite set associative operation

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu$$
: $\{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton \approx finite ???

Forests grows horizontally and vertically: two operations

finite set associative operation

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu: \{a, b\} \to M$$
 extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$ $\to L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton \approx finite ???

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{\triangleleft}{\circ}$

finite set associative operation

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu: \{a, b\} \to M$$
 extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$ $\to L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton \approx

 \approx finite ???

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie.

ightarrow two-sorted algebra

finite set associative operation

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu$$
: $\{a, b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton
$$\approx$$
 finite forest algebra $(H, +, V, \cdot, *, \cdots)$

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{a}{=}$

ightarrow two-sorted algebra

finite set associative operation

contexts

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu$$
: $\{a, b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton pprox finite forest algebra $(H,+,V,\cdot,*,\cdots)$

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{a}{\leftarrow}$

ightarrow two-sorted algebra

finite set associative operation

forests

contexts

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu$$
: $\{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton \approx finite forest algebra $(H, +, V, \cdot, *, *, \cdots)$

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{a}{\circ}$

ightarrow two-sorted algebra

finite word automaton

finite monoid
$$(M, \cdot)$$

recognize same languages

Take
$$\mu$$
: $\{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite forest algebra
$$(H, +, V, \cdot, *, \cdot, \cdot)$$

forests

finite set associative operation

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{\frown}{a}$

 \rightarrow two-sorted algebra

contexts

other stuff

finite word automaton

finite monoid $(M, \cdot)^{*}$

recognize same languages

Take
$$\mu$$
: $\{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

 \approx finite forest algebra $(H, +, V, \cdot, *, \cdot, \cdot)$

Forests grows horizontally and vertically: two operations

 \rightarrow two-sorted algebra

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{\frown}{a}$

finite set associative operation

contexts

other stuff

Take $\mu: \{a, b\} \to H, \{{}^{\mathsf{a}}_{\bot}, {}^{\mathsf{b}}_{\bot}\} \to V$ extended to all forests and contexts

finite word automaton

finite monoid (M, \cdot)

recognize same languages

Take μ : $\{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

finite tree automaton
$$\approx$$
 finite forest algebra $(H, +, V, \cdot, *, \cdot, \cdot)$

Forests grows horizontally and vertically: two operations

How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{\frown}{\Rightarrow}$ two-sorted algebra

contexts

other stuff

finite set associative operation

Take $\mu: \{a, b\} \to H, \{{}^{\mathsf{a}}_{\square}, {}^{\mathsf{b}}_{\square}\} \to V$ extended to all forests and contexts $\to L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq H$

finite word automaton

finite monoid (M, \cdot)

finite set associative operation

contexts

recognize same languages

Take $\mu \colon \{a,b\} \to M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n) \to L$ recognized by $\mu \colon L = \mu^{-1}(P)$ for $P \subseteq M$

Take $\mu: \{a, b\} \to H, \{{}^{\mathsf{a}}_{\bot}, {}^{\mathsf{b}}_{\bot}\} \to V$ extended to all forests and contexts

 \rightarrow L recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq H$

forests forests other stuff forest algebra
$$(H, +, V, \cdot, *, \cdot \cdot \cdot)$$
 recognize same languages $\stackrel{a}{\downarrow} + a = \stackrel{a}{\downarrow} a$ Forests grows horizontally and vertically: two operations How to add two trees vertically? \rightarrow use contexts: ie. $\stackrel{a}{\downarrow} = \stackrel{a}{\downarrow} = \stackrel{$

3/

ightarrow Even on words is recognized by $(\{0,1\}, + \text{ mod } 2)$ via $\mu(w) = \#_a(w) \text{ mod } 2$

- \rightarrow Even on words is recognized by $(\{0,1\}, + \text{ mod } 2)$ via $\mu(w) = \#_a(w) \text{ mod } 2$
- → Even on forests is recognized by:
 - \vdash $H = V = \{0, 1\}$
 - $+ = \cdot = * = (+ \mod 2)$
 - $\mu = \#_a \mod 2$

- \rightarrow Even on words is recognized by $(\{0,1\}, + \text{ mod } 2)$ via $\mu(w) = \#_a(w) \text{ mod } 2$
- → Even on forests is recognized by:
 - \vdash $H = V = \{0, 1\}$
 - $+ = \cdot = * = (+ \mod 2)$
 - ho $\mu = \#_a \mod 2$
- → Antichain is recognized by:
 - $\blacktriangleright H = \{\varepsilon, a, \frac{\mathsf{a}}{\mathsf{a}}\}, \ V = \{\Box, \mathsf{a} + \Box, \frac{\mathsf{a}}{\mathsf{a}}, \frac{\mathsf{a}}{\mathsf{a}}\}$

- \rightarrow Even on words is recognized by $(\{0,1\}, + \text{ mod } 2)$ via $\mu(w) = \#_a(w) \text{ mod } 2$
- → Even on forests is recognized by:
 - \vdash $H = V = \{0, 1\}$
 - $+ = \cdot = * = (+ \mod 2)$
 - $\mu = \#_a \mod 2$
- → Antichain is recognized by:

$$\blacktriangleright \ \ H = \{\varepsilon, a, \frac{a}{a}\}, \ \ V = \{\Box, a+\Box, \frac{a}{a}, \frac{a}{a}\}$$

- \blacktriangleright μ (no a) = ε
- \blacktriangleright $\mu(antichain) = a$
- $\blacktriangleright \mu(\text{comparable } a) = \frac{\mathsf{a}}{\mathsf{a}}$

- \blacktriangleright $\mu(\text{no }a)=\Box$
- \blacktriangleright μ (antichain + no a before \square) = a + \square
- \blacktriangleright μ (antichain +a before \square) $= \frac{a}{\square}$
- $\mu(\text{comparable } a) = \begin{bmatrix} a \\ a \\ -1 \end{bmatrix}$

- \rightarrow Even on words is recognized by ($\{0,1\}$, + mod 2) via $\mu(w) = \#_a(w)$ mod 2
- → Even on forests is recognized by:
 - \vdash $H = V = \{0, 1\}$
 - $+ = \cdot = * = (+ \mod 2)$
 - $\mu = \#_a \mod 2$
- → Antichain is recognized by:

$$\blacktriangleright \ \ H = \{\varepsilon, a, \frac{a}{a}\}, \ \ V = \{\Box, a+\Box, \frac{a}{b}, \frac{a}{a}\}$$

- \blacktriangleright μ (no a) = ε
- \blacktriangleright μ (antichain) = a
- $\blacktriangleright \mu(\text{comparable } a) = \frac{a}{a}$

- \blacktriangleright $\mu(\text{no }a)=\Box$
- \blacktriangleright μ (antichain + no a before \square) = a + \square
- \blacktriangleright $\mu(\text{antichain } + a \text{ before } \Box) = \frac{\mathsf{a}}{\Box}$
- $\mu(\text{comparable } a) = \begin{bmatrix} a \\ a \\ a \end{bmatrix}$
- $\rightarrow +, \cdot, *$ defined to match the semantic.

time

Maintenance in $O(\log(n)/\log\log(n))$

Theorem

Theorem

Theorem

Every regular language of tree can be maintained in $O(\log(n)/\log\log(n))$ time

Theorem

- $ightharpoonup \leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$

∈ Antichain?

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$

 \in Antichain?

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times

∈ Antichain?

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times

evaluates to $a \in Antichain$

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times

evaluates to a ∈ Antichain

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times

evaluates to a \in Antichain

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2}$ clusters of size $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times

evaluates to a ∈ Antichain

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2} \text{ clusters of size}$ $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times

evaluates to $\frac{a}{a} \notin Antichain$

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times
- handle updates in constant time per layer

evaluates to $\frac{a}{a} \notin Antichain$

Theorem

- $\leq \frac{n}{\log(n)}$ clusters of size $\leq \log(n)$
- maintain images in clusters by brute force
- $\leq \frac{n}{\log(n)^2} \text{ clusters of size}$ $\leq \log(n)$
- ▶ iterate $\leq \frac{\log(n)}{\log\log(n)}$ times
- handle updates in constant time per layer
- preprocessing in linear time

evaluates to $\frac{a}{a} \notin Antichain$

Maintenance in constant time

Commutative languages: membership only depends on the number of each letter

6/9

Commutative languages: membership only depends on the number of each letter

 \rightarrow Maintainable in constant time.

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof

Maintain the count of the number of each letter in O(1)

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof

- Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Proof

lacktriangle Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

Commutative languages: membership only depends on the number of each letter

 \rightarrow Maintainable in constant time.

Proof

- Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Proof

- ightharpoonup Maintain an unordered doubly-linked list of the non-neutral letters in O(1)
- ▶ If the size if more than |w|: reject

Commutative languages: membership only depends on the number of each letter

Maintainable in constant time.

Proof

- \blacktriangleright Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

- ightharpoonup Maintain an unordered doubly-linked list of the non-neutral letters in O(1)
- ▶ If the size if more than |w|: reject
- ▶ If not: reconstruct the subtree with a precomputed structure for ancestors.

Commutative languages: membership only depends on the number of each letter

Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Proof

- lacktriangle Maintain an unordered doubly-linked list of the non-neutral letters in O(1)
- ▶ If the size if more than |w|: reject
- ▶ If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton languages

Commutative languages: membership only depends on the number of each letter

Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Proof

- \blacktriangleright Maintain an unordered doubly-linked list of the non-neutral letters in O(1)
- ▶ If the size if more than |w|: reject
- ▶ If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton languages

→ Maintainable in constant time.

Commutative languages: membership only depends on the number of each letter

Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Proof

- \blacktriangleright Maintain an unordered doubly-linked list of the non-neutral letters in O(1)
- ▶ If the size if more than |w|: reject
- ▶ If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton languages

- → Maintainable in constant time.
- \rightarrow What is this class?

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof

- ightharpoonup Maintain the count of the number of each letter in O(1)
- ► regular ⇒ ultimately periodic conditions on the counts

Singleton languages: $\{w\}$ + neutral letters

→ Maintainable in constant time.

Proof

- \blacktriangleright Maintain an unordered doubly-linked list of the non-neutral letters in O(1)
- ▶ If the size if more than |w|: reject
- ▶ If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton languages

- → Maintainable in constant time.
- \rightarrow What is this class? \rightarrow algebra

Syntactic forest algebra: smallest forest algebra recognizing L

Syntactic forest algebra: smallest forest algebra recognizing L

ightarrow there is an integer ω , such that $v^\omega \cdot v^\omega = v^\omega$, $\forall v \in V$

Syntactic forest algebra: smallest forest algebra recognizing L

 \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

 \Leftrightarrow

The syntactic forest algebra satisfies:

 $\forall v, w \in V, \ \forall k \ge \omega, \ v \cdot w^k = w^k \cdot v$

(ZG)

Syntactic forest algebra: smallest forest algebra recognizing L Decidable \rightarrow there is an integer ω , such that $v^\omega \cdot v^\omega = v^\omega$, $\forall v \in V$ Almost commutative \Leftrightarrow The syntactic forest algebra satisfies: $\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$ (ZG)

Proof

▶ L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$

Syntactic forest algebra: smallest forest algebra recognizing
$$L$$
 Decidable \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative \Leftrightarrow The syntactic forest algebra satisfies: $\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$ (ZG)

- $ightharpoonup L commutative <math>\Rightarrow V commutative \Rightarrow (ZG)$
- ► L singleton $\Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)

Syntactic forest algebra: smallest forest algebra recognizing
$$L$$
 Decidable \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative \Leftrightarrow The syntactic forest algebra satisfies: $\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$ (ZG)

- $ightharpoonup L commutative <math>\Rightarrow V commutative \Rightarrow (ZG)$
- ► L singleton $\Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied

Syntactic forest algebra: smallest forest algebra recognizing L

Decidable

(ZG)

 \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$$

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k \text{ behaves like a context with no non-neutral letters or a lot}$ of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L

Decidable

 \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k \geq \omega, \ v \cdot w^k = w^k \cdot v$$
 (ZG)

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L Decidable \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k \geq \omega, \ v \cdot w^k = w^k \cdot v$$
 (ZG)

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k \text{ behaves like a context with no non-neutral letters or a lot}$ of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L

Decidable

 \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

$$\Leftrightarrow$$

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k \geq \omega, \ v \cdot w^k = w^k \cdot v$$
 (ZG)

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L Decidable \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies: (ZG) $\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Decidable

Almost commutative

$$\Leftrightarrow$$

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k \geq \omega, \ v \cdot w^k = w^k \cdot v$$
 (ZG)

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L

Decidable

 \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies: $\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$

(ZG)

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L Decidable \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k \geq \omega, \ v \cdot w^k = w^k \cdot v$$
 (ZG)

- ightharpoonup L commutative $\Rightarrow V$ commutative $\Rightarrow (ZG)$
- $L \text{ singleton} \Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L

Decidable

(ZG)

 \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$

Almost commutative

The syntactic forest algebra satisfies:
$$\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$$

- $ightharpoonup L commutative <math>\Rightarrow V commutative \Rightarrow (ZG)$
- $ightharpoonup L singleton <math>\Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Syntactic forest algebra: smallest forest algebra recognizing L Decidable \rightarrow there is an integer ω , such that $v^{\omega} \cdot v^{\omega} = v^{\omega}$, $\forall v \in V$ The syntactic forest algebra satisfies: (ZG) Almost commutative $\forall v, w \in V, \ \forall k > \omega, \ v \cdot w^k = w^k \cdot v$

- $ightharpoonup L commutative <math>\Rightarrow V commutative \Rightarrow (ZG)$
- $ightharpoonup L singleton <math>\Rightarrow w^k$ behaves like a context with no non-neutral letters or a lot of them \Rightarrow (ZG)
- ► (ZG) ⇒ many other equations are implied \rightarrow terms v^k for $k \ge \omega$ can be moved anywhere whithout changing the image

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 \rightarrow Wlog. $v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 \rightarrow Wlog. $v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

 \downarrow

L

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 \rightarrow Wlog. $v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

 \downarrow

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 $ightarrow Wlog. \ v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

0	1	1	0

 \downarrow

L

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 $ightarrow Wlog. \ v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

0	1	1	#

 \downarrow

L

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 $ightarrow Wlog. \ v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

0	1	1	#

 \in Prefix- \vee

L

evaluates to $\mathbf{w}^{\omega} \cdot \mathbf{v} \cdot \mathbf{w}^{\omega}$

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 \rightarrow Wlog. $v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

∉ Prefix-∨

 \downarrow

L

evaluates to $v \cdot w^{\omega}$

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 \rightarrow Wlog. $v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

 \downarrow

Ī

evaluates to $v \cdot w^{\omega}$

Conjecture (used in Amarilli, Jachiet, Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)

Input: a word $w \in \{0, 1, \#\}$ with at most one #.

Output: is there a 1 before the #?

L not almost-commutative \Rightarrow there are $v, w \in V$, $v \cdot w^{\omega} \neq w^{\omega} \cdot v$ (simplification)

 \rightarrow Wlog. $v \cdot w^{\omega} \neq w^{\omega} \cdot v \cdot w^{\omega}$

Prefix-V:

 \downarrow

evaluates to $\mathbf{v} \cdot \mathbf{w}^{\omega}$

Theorem

Maintainable in O(1) time \Leftrightarrow almost-commutative

Theorem

- ▶ All regular languages of forests can be maintained in $O(\log(n)/\log\log(n))$ time
- ▶ Maintainable in O(1) time \Leftrightarrow Boolean combinations of commutative and singleton languages

Theorem

- ▶ All regular languages of forests can be maintained in $O(\log(n)/\log\log(n))$ time
- ▶ Maintainable in O(1) time \Leftrightarrow Boolean combinations of commutative and singleton languages

Theorem

- ▶ All regular languages of forests can be maintained in $O(\log(n)/\log\log(n))$ time
- ▶ Maintainable in O(1) time \Leftrightarrow Boolean combinations of commutative and singleton languages

- Obtaining a trichotomy like for words
 - \rightarrow study the $O(\log \log(n))$ regime
 - → different already for aperiodics

Theorem

- All regular languages of forests can be maintained in $O(\log(n)/\log\log(n))$ time
- ▶ Maintainable in O(1) time \Leftrightarrow Boolean combinations of commutative and singleton languages

- Obtaining a trichotomy like for words
 - \rightarrow study the $O(\log \log(n))$ regime
 - → different already for aperiodics
- Remove the neutral letter assumption
 - ightarrow the algebraic theory of trees is less developed than for words

Theorem

- All regular languages of forests can be maintained in $O(\log(n)/\log\log(n))$ time
- ▶ Maintainable in O(1) time \Leftrightarrow Boolean combinations of commutative and singleton languages

- Obtaining a trichotomy like for words
 - \rightarrow study the $O(\log \log(n))$ regime
 - → different already for aperiodics
- Remove the neutral letter assumption
 - ightarrow the algebraic theory of trees is less developed than for words
- handle modifications of the shape of the tree