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Incremental maintenance of forests

— Labelled ordered unranked forests

a a a € Antichain

— Fixed structure
— Technicality: presence of neutral letter (here b)
— No proven trichotomy

Theorem (this talk)
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» There is a decidable characterization of regular languages of forests that can
be maintained in constant time
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— the algebraic theory of trees is less developed than for words
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