Dynamic Membership for Regular Tree Languages

Antoine Amarilli, Corentin Barloy, Louis Jachiet, Charles Paperman

TELE%DVMV
L Université i
LL de Lille M 5.4 1 |

W2 1P PARIS

()

Incremental maintenance of words

la[b|[b[a[bla]a|b]|ecEven

1/9

Incremental maintenance of words

la|b|bla|bfa|b]|b|¢Even

1/9

Incremental maintenance of words

‘a‘b\b‘a\b‘a\b‘a\eEven

1/9

Incremental maintenance of words

la|blala|b|a|b|a]¢Even

1/9

Incremental maintenance of words

la|blala|b|a|b|a]¢Even

— use auxiliary data structures

1/9

Incremental maintenance of words

la|bfafa|ba|b]a]|¢Even

— use auxiliary data structures
— for Even: flip a bit

1/9

Incremental maintenance of words

la|bfafa|ba|b]a]|¢Even

— use auxiliary data structures
— for Even: flip a bit
— Here: RAM model with linear preprocessing

1/9

Incremental maintenance of words

la|bfafa|ba|b]a]|¢Even

— use auxiliary data structures
— for Even: flip a bit
— Here: RAM model with linear preprocessing
— What is the time needed to recompute membership?

1/9

Incremental maintenance of words

la|bfafa|ba|b]a]|¢Even

— use auxiliary data structures
— for Even: flip a bit
— Here: RAM model with linear preprocessing
— What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language L can either be maintained in:
» constant time
» O(loglog(n)) time. (Conditional)
» O(log(n)/ loglog(n)) time

1/9

Incremental maintenance of words

la|bfafa|ba|b]a]|¢Even

— use auxiliary data structures
— for Even: flip a bit
— Here: RAM model with linear preprocessing
— What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language L can either be maintained in:
» constant time
» O(loglog(n)) time. (Conditional)
» O(log(n)/ loglog(n)) time

— based on algebraic properties

1/9

Incremental maintenance of words

la|bfafa|ba|b]a]|¢Even

— use auxiliary data structures
— for Even: flip a bit
— Here: RAM model with linear preprocessing
— What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language L can either be maintained in:
» constant time
» O(loglog(n)) time. (Conditional)
» O(log(n)/ loglog(n)) time

— based on algebraic properties
— Decidable

1/9

Forest languages

Incremental maintenance of forests

— Labelled ordered unranked forests

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

€ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests
a

/AN

b b b

/N

b b b

€ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests
a

¢ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests
a

¢ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

€ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

€ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

b
RN
b a b
AN
a a p

— Fixed structure

€ Antichain

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

b
RN
b a b € Antichain
/N
a a b

— Fixed structure
— Technicality: presence of neutral letter (here b)

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests
b

b a
a a

€ Antichain

— Fixed structure
— Technicality: presence of neutral letter (here b)

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

b

/ ‘ \ € Antichain

a d d

— Fixed structure
— Technicality: presence of neutral letter (here b)

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

a a a € Antichain

— Fixed structure
— Technicality: presence of neutral letter (here b)

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

a a a € Antichain

— Fixed structure
— Technicality: presence of neutral letter (here b)
— No proven trichotomy

2/9

Incremental maintenance of forests

— Labelled ordered unranked forests

a a a € Antichain

— Fixed structure
— Technicality: presence of neutral letter (here b)
— No proven trichotomy

Theorem (this talk)
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» There is a decidable characterization of regular languages of forests that can
be maintained in constant time

2/9

Forest algebras

finite word automaton

~

finite monoid (M, -)

3/9

Forest algebras

finite word automaton

~

finite set

finite monoid (I\/I

associative operation

v

3/9

Forest algebras

~

finite word automaton ~

Take p: {a,b} — M extended to £* by u(a;

finite monoid (I\/I

- an)

= M(al) ..

finite set

associative operation

v

-11(an)

3/9

Forest algebras

~

finite word automaton ~

Take p: {a,b} — M extended to * by u(a; -
— L recognized by p: L= p 1(P) for PC M

finite set associative operation

v

finite monoid (I\/I

an) = p(ar) -~ - p(an)

3/9

Forest algebras

~

finite word automaton ?

finite monoid (I\/I

finite set

recognize same languages

Take p: {a,b} — M extended to * by u(a;---a,

— L recognized by p: L= p 1(P) for PC M

)

= M(al) ..

associative operation

e

-11(an)

3/9

Forest algebras finite set associative operation

v

finite word automaton T finite monoid (I\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

~

finite tree automaton R finite 777

3/9

Forest algebras finite set associative operation

v

finite word automaton T finite monoid (I\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

~

finite tree automaton R finite 777

Forests grows horizontally and vertically: two operations

3/9

finite word automaton T finite monoid (I\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

finite tree automaton R finite 777

Forests grows horizontally and vertically: two operations

a
How to add two trees vertically? — use contexts: ie. a o

Forest algebras finite set associative operation

v

3/9

finite word automaton T finite monoid (I\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

finite tree automaton R finite 777

Forests grows horizontally and vertically: two operations

a
How to add two trees vertically? — use contexts: ie. a o
— two-sorted algebra

Forest algebras finite set associative operation

v

3/9

Forest algebras finite set associative operation

v

finite word automaton T finite monoid (I\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

finite tree automaton = finite forest algebra (H,+, V-, *,--+)

Forests grows horizontally and vertically: two operations

a
How to add two trees vertically? — use contexts: ie. a o
— two-sorted algebra

3/9

Forest algebras finite set associative operation

v

finite word automaton T finite monoid (/\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

contexts
forests i
. . \
finite tree automaton = finite forest algebra (H,+, V-, %,---)

Forests grows horizontally and vertically: two operations

a
How to add two trees vertically? — use contexts: ie. a o
— two-sorted algebra

3/9

finite set associative operation

Forest algebras
/

finite word automaton T finite monoid (/\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

contexts

forests i

finite tree automaton ~ finite forest algebra (H,+, V/, -, %,)
el
I+ a= 2 a

Forests grows horizontally and vertically: two operations a a @

a -1 =a

How to add two trees vertically? — use contexts: ie. a o S
— two-sorted algebra ﬁ w3 —

Forest algebras finite set associative operation

finite word automaton T finite monoid (/\/I

recognize same languages

Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

contexts
forests i other stuff
. . /
finite tree automaton ~ finite forest algebra (H, +, V, -, *,-)
el
I +a= z a
Forests grows horizontally and vertically: two operations a a @
A 1=

How to add two trees vertically? — use contexts: ie. a ©

— two-sorted algebra

3/9

Forest algebras

finite set associative operation

e

finite word automaton T finite monoid (/\/I

recognize same languages

Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

contexts
forests i other stuff

. S "
finite tree automaton = finite forest algebra (H,+, V-, *,--+)

Forests grows horizontally and vertically: two operationsa a a G
How to add two trees vertically? — use contexts: ie. a & 5P 4
— two-sorted algebra ﬁ wa— 2

Take pu: {a,b} — H, {7, g} — V extended to all forests and contexts

3/9

Forest algebras finite set associative operation

e

finite word automaton T finite monoid (/\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

contexts

forests i other stuff
. > /
finite tree automaton ~ finite forest algebra (H,+, V/, -, %,)
el
I+ a= z a

Forests grows horizontally and vertically: two operationsa a a_ E
How to add two trees vertically? — use contexts: ie. a & R
— two-sorted algebra aﬂ * 3= aka

Take pu: {a,b} — H, {7, g} — V extended to all forests and contexts
— L recognized by u: L= pu~1(P) for P C H

3/9

Forest algebras finite set associative operation

e

finite word automaton T finite monoid (/\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p 1(P) for PC M

contexts
forests i other stuff
_ . > Y
finite tree automaton ~ finite forest algebra (H,+, V/, -, %,)
el
. f a _a
recognize same languages 4 +ta=1 2

Forests grows horizontally and vertically: two operatlonsa a a_ E
How to add two trees vertically? — use contexts: ie. a & R
— two-sorted algebra aﬂ * 3= aka

Take pu: {a,b} — H, {7, g} — V extended to all forests and contexts
— L recognized by u: L= pu~1(P) for P C H

3/9

Examples

— Even on words is recognized by ({0,1},+ mod 2) via pu(w) = #,(w) mod 2

4/9

Examples
— Even on words is recognized by ({0,1},+ mod 2) via pu(w) = #,(w) mod 2
— Even on forests is recognized by:
» H=V ={0,1}
> +=-=x=(+ mod2)
> 1= F#, mod 2

4/9

Examples

— Even on words is recognized by ({0,1},+ mod 2) via pu(w) = #,(w) mod 2
— Even on forests is recognized by:

» H=V ={0,1}

> +=-=x=(+ mod2)

> 1= F#, mod 2

— Antichain is recognized by:
a

> HZ{g,QaZ}v V:{D,3+D,g,a}

4/9

Examples

— Even on words is recognized by ({0,1},+ mod 2) via pu(w) = #,(w) mod 2
— Even on forests is recognized by:

» H=V ={0,1}

> +=-=x=(+ mod2)

> 1= F#, mod 2

— Antichain is recognized by:

> H:{57aaz}v V:{D73+D7§7%}

a
» u(noa)=¢e >
» u(antichain) = a » p(antichain + no a before () = a+o
» s(comparable a) = z » p(antichain + a before 0) = Z
(

a
> p(comparable a) = a
[m}

4/9

Examples
— Even on words is recognized by ({0,1},+ mod 2) via pu(w) = #,(w) mod 2
— Even on forests is recognized by:
» H=V ={0,1}
> +=-=x=(+ mod2)
> 1= F#, mod 2

— Antichain is recognized by:

> H={ea i}, V={0Oa+0,? 3}

0’

a
» u(noa)=¢e > u(no a) =
» u(antichain) = a > ,u(antlcham + no a before) = a+o
» s(comparable a) = z » p(antichain + a before 0) = \
a
|
» 1(comparable a) = ;

» +, -, * defined to match the semantic.

4/9

Maintenance in O(log(n)/ log log(n))
time

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

b
T
b b b
N U~ N
ab b b b b b

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

» < 2 clusters of size b

log(n)
< log(n) /N
b b b
a b b b b b

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

i)
> < % clusters of size b

< log(n) e

» maintain images in clusters by

b b
brute force A /N A\

ab b b b bbb
2 NAN | €
b b a b ba b
ANEVAC VAN

b b b b a a

€ Antichain?

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

>

| 2

>

< b
o () clusters of size

< log(n) e
maintain images in clusters by at

b b
brute force A /N /N

< (Tog(n)? clusters of size a b b b

b
gllog() bA A i
ANVAS

b b b b a a

mi
o
O

€ Antichain?

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

>

| 2

>

< b
o () clusters of size

< log(n) T
maintain images in clusters by at0 a+g b D

b b
brute force A /N /N

< —75 clusters of size a 2
Sllog(()) bA A 5
iy Y [N -

b b b b a a

[\§)

oy
o
oy

€ Antichain?

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

>

| 2

>

> i

< () clusters of size b

< log(n) T
maintain images in clusters by b a+o asp b U b
brute force A /N /N

< (Tog(n)? clusters of size

b
> a
< log(n) NN

[\§)

oy
o
oy

b

| n .

terate < 2L times Y LAY Y °
b b b b a a

€ Antichain?

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

n .
< Tog(m) clusters of size b

< log(n) _— T
» maintain images in clusters by at0 a+g b D

b b
brute force A /N /N

Tog(n)? ' ab b b b bbb
> < jog(a Clusters of size A ; A ‘ .
< log(n)
> iterate < 28D _ times K b ﬂ b K a b
= loglog(n) e E B

b b b b a a

evaluates to a € Antichain

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

n .
< Tog(m) clusters of size b

< log(n) /N
» maintain images in clusters by

b b
brute force A /N /N

n : b b b b b b b
> < (e Clusters of size a A 5 A | £
< log(n)
> iterate < 28D times A : ﬂ - K ‘A
— loglog(n) € a a

b b b b a a

evaluates to a € Antichain

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

n .
< Tog(m) clusters of size b

< log(n) /N
» maintain images in clusters by

b b
brute force A /N /N

n : b b b b b b b
> < (e Clusters of size a A 5 A | £
< log(n)
> iterate < 28D times A : ﬂ - K ‘A
— loglog(n) € a a

b b b b a a

evaluates to a € Antichain

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

n .
< Tog(m) clusters of size b

< log(n) /N
» maintain images in clusters by

b b
brute force A /N /N

n : b b b b b b b
> < (e Clusters of size a A 5 A | £
< log(n)
> iterate < 28D times A : ﬂ - K ‘A
— loglog(n) € a a

b b b b a a

evaluates to a € Antichain

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

> < IL clusters of size
og(n)

< log(n) /N
» maintain images in clusters by s o b
brute force A /N /N

» < 1 clusters of size s U o a v T @
— log(n)? €
< log(n) bA b Ab ba b
; log(n) 2

> iterate < Tog log(n) times A 5 A a A a

b b b b a a

evaluates to | ¢ Antichain

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

v

< 8+ clusters of size b
log(n)
< log(n) /N

maintain images in clusters by s o b
brute force A /N /N

< - clusters of size & 0 a v G
— log(n)? €
< loa(m A " /A | |

_ log(n) .- b b a b b a b
iterate < Iogig(n) times A 5 A a A a
handle updates in constant b b - a a

time per layer

evaluates to | ¢ Antichain

5/9

Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ loglog(n)) time

» < ooy Clusters of size o
g(n)
< log(n) /N

» maintain images in clusters by s o b
brute force A /N /N

» < - clusters of size 2 2 a b o G
— log(n)? €
< log(n) bA b Ab ba b
H IOg(n) t a

> iterate < Tog log(n) Imes A 5 A a A a

» handle updates in constant b b - a a
time per layer

» preprocessing in linear time evaluates to z ¢ Antichain

5/9

Maintenance in constant time

Upper bounds

Commutative languages: membership only depends on the number of each letter

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

» If the size if more than |w/|: reject

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

» If the size if more than |w/|: reject

» If not: reconstruct the subtree with a precomputed structure for ancestors.

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

» If the size if more than |w/|: reject

» If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton
languages

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

» If the size if more than |w/|: reject

» If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton
languages
— Maintainable in constant time.

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

» If the size if more than |w/|: reject

» If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton
languages

— Maintainable in constant time.

— What is this class?

6/9

Upper bounds

Commutative languages: membership only depends on the number of each letter
— Maintainable in constant time.

Proof
» Maintain the count of the number of each letter in O(1)

» regular = ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
— Maintainable in constant time.

Proof
» Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

» If the size if more than |w/|: reject

» If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton
languages

— Maintainable in constant time.

— What is this class? — algebra

6/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L
— there is an integer w, such that v¥ - v¥ = v¥ Vv € V

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L

— there is an integer w, such that v¥ - v¥ = v¥ Vv € V

The syntactic forest algebra satisfies:
k

i =
Almost commutative Yv.weV, Vk>w, v-wk=wk. v

(26)

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L

— there is an integer w, such that v¥ - v¥ = v¥ Vv € V
The syntactic forest algebra

i =
Almost commutative Vv,we V, Vk>w, v wk

Decidable

satisfies:

:Wk'V

(26)

7/9

An algebraic characterization
Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:
k (2G)

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

An algebraic characterization
Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:
k (2G)

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot

of them = (ZG)

7/9

An algebraic characterization
Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:
k (2G)

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot

of them = (ZG)
» (ZG) = many other equations are implied

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

i =
Almost commutative VYv,we V, Vk>w, v wk=wk. v

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

o>

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L Decidable

— there is an integer w, such that v¥ - v¥ =v¥ VYv e V 1/
The syntactic forest algebra satisfies:

. o ZG
Almost commutative VYv,weV, Vk>w, v-wk=wk.v (2G)

Proof
» [commutative = V commutative = (ZG)

» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L
— there is an integer w, such that v¥ - v¥ = v¥ Vv € V

Almost commutative ~

The syntactic forest alg
Vv,we V, Vk>w, v

Decidable

e@es .

'Wk:Wk'V

(26)

Proof

of them = (ZG)

» [commutative = V commutative = (ZG)
» [singleton = w* behaves like a context with no non-neutral letters or a lot

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

w+ #.

- —0o—0—0—0

7/9

An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L
— there is an integer w, such that v¥ - v¥ = v¥ Vv € V

Almost commutative

=

The syntactic forest aIge@es:

Yv,we V, Vk>w, v wk

Decidable

K (26)

=w" -V

Proof

commutative
information —

» [commutative = V commutative = (ZG)
» [singleton = w* behaves like a context with no non-neutral letters or a lot
of them = (ZG)

» (ZG) = many other equations are implied
— terms v for k > w can be moved anywhere whithout changing the image

w+ #.

- —0o—0—0—0

.— information

singleton

7/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)
Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)
Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® # w* - v (simplification)

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)
Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® # w* - v (simplification)
— Wiog. v-w® #£ w¥ - v-w¥

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)

Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: ’ ‘ ‘ ‘

R

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)

Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: ’ ‘ ‘ ‘

R

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)
Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: o [1 [1 0 |

R

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)
Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: ’ 0 ‘ 1 ‘ 1 ‘ i ‘

R

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)

Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: ’ 0 ‘ 1 ‘ 1 \ # ‘ € Prefix-Vv

C GRERERR e

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)

Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: 0o | # | 1 0 | ¢ Prefix-v

 GBBR e

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)
Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)
— Wiog. v-w* # w¥ v -w¥

Prefix-V: 0o | # | 1 0 | ¢ Prefix-V
i

 CBBR e

8/9

Lower bound

Conjecture (used in Amarilli, Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-V)

Input: a word w € {0,1,#} with at most one #.
Output: is there a 1 before the #7

L not almost-commutative = there are v,w € V, v - w® % w® - v (simplification)

— Wiog. v-w* # w¥ v -w¥

Prefix-V: 0o | # | 1 0 | ¢ Prefix-v
L ()
L «««‘ evaluates to v - w¥
Theorem

Maintainable in O(1) time < almost-commutative

8/9

Conclusion

Theorem
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» Maintainable in O(1) time < Boolean combinations of commutative and
singleton languages

9/9

Conclusion

Theorem
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» Maintainable in O(1) time < Boolean combinations of commutative and
singleton languages

What's next:

9/9

Conclusion

Theorem
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» Maintainable in O(1) time < Boolean combinations of commutative and
singleton languages

What's next:
» Obtaining a trichotomy like for words
— study the O(loglog(n)) regime
— different already for aperiodics

9/9

Conclusion

Theorem
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» Maintainable in O(1) time < Boolean combinations of commutative and
singleton languages

What's next:
» Obtaining a trichotomy like for words
— study the O(loglog(n)) regime
— different already for aperiodics

> Remove the neutral letter assumption
— the algebraic theory of trees is less developed than for words

9/9

Conclusion

Theorem
» All regular languages of forests can be maintained in O(log(n)/ loglog(n))
time
» Maintainable in O(1) time < Boolean combinations of commutative and
singleton languages

What's next:

» Obtaining a trichotomy like for words
— study the O(loglog(n)) regime
— different already for aperiodics
> Remove the neutral letter assumption
— the algebraic theory of trees is less developed than for words

» handle modifications of the shape of the tree

9/9

