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Incremental maintenance of words

a b b a b a a b ∈ Even

→ use auxiliary data structures
→ for Even: flip a bit

→ Here: RAM model with linear preprocessing
→ What is the time needed to recompute membership?

Complete answer for regular languages:

Theorem (Amarilli, Jachiet, Paperman)

A regular language L can either be maintained in:

▶ constant time

▶ Θ(log log(n)) time. (Conditional)

▶ Θ(log(n)/ log log(n)) time

→ based on algebraic properties
→ Decidable
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Forest languages



Incremental maintenance of forests

→ Labelled ordered unranked forests

→ Fixed structure
→ Technicality: presence of neutral letter (here b)
→ No proven trichotomy

Theorem (this talk)

▶ All regular languages of forests can be maintained in O(log(n)/ log log(n))
time

▶ There is a decidable characterization of regular languages of forests that can
be maintained in constant time
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Forest algebras

finite word automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

Forests grows horizontally and vertically: two operations

How to add two trees vertically? → use contexts: ie.
a

a □

→ two-sorted algebra

forests
contexts

a
a + a = a

a a

a
□
· a

□
=

a
a
□

a
a □

∗ a = a
a a

other stuff

Take µ : {a, b} → H, {a
□
, b

□
} → V extended to all forests and contexts

→ L recognized by µ: L = µ−1(P) for P ⊆ H

recognize same languages
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Examples

→ Even on words is recognized by ({0, 1},+ mod 2) via µ(w) = #a(w) mod 2

→ Even on forests is recognized by:

▶ H = V = {0, 1}
▶ + = · = ∗ = (+ mod 2)

▶ µ = #a mod 2

→ Antichain is recognized by:

▶ H = {ε, a, aa}, V = {□, a + □, a
□
,
a
a
□

}

▶ µ(no a) = ε

▶ µ(antichain) = a

▶ µ(comparable a) = a
a

▶ µ(no a) = □

▶ µ(antichain + no a before □) = a + □

▶ µ(antichain + a before □) = a
□
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Maintenance in O(log(n)/ log log(n))
time



Clustering

Theorem
Every regular language of tree can be maintained in O(log(n)/ log log(n)) time

▶ ≤ n
log(n) clusters of size

≤ log(n)

▶ maintain images in clusters by
brute force

▶ ≤ n
log(n)2

clusters of size

≤ log(n)

▶ iterate ≤ log(n)
log log(n) times

▶ handle updates in constant
time per layer

▶ preprocessing in linear time
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Maintenance in constant time



Upper bounds

Commutative languages: membership only depends on the number of each letter

→ Maintainable in constant time.

Proof
▶ Maintain the count of the number of each letter in O(1)

▶ regular ⇒ ultimately periodic conditions on the counts

Singleton languages: {w}+ neutral letters
→ Maintainable in constant time.

Proof
▶ Maintain an unordered doubly-linked list of the non-neutral letters in O(1)

▶ If the size if more than |w |: reject
▶ If not: reconstruct the subtree with a precomputed structure for ancestors.

Almost-commutative languages: Boolean combination of commutative and singleton
languages
→ Maintainable in constant time.
→ What is this class? → algebra
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An algebraic characterization

Syntactic forest algebra: smallest forest algebra recognizing L

→ there is an integer ω, such that vω · vω = vω, ∀v ∈ V

Almost commutative ⇔ The syntactic forest algebra satisfies:
∀v ,w ∈ V , ∀k ≥ ω, v · wk = wk · v (ZG)

Decidable

Proof
▶ L commutative ⇒ V commutative ⇒ (ZG)

▶ L singleton ⇒ wk behaves like a context with no non-neutral letters or a lot
of them ⇒ (ZG)

▶ (ZG) ⇒ many other equations are implied
→ terms vk for k ≥ ω can be moved anywhere whithout changing the image

commutative
information

singleton
information
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Lower bound

Conjecture (used in Amarilli,Jachiet,Paperman): this is not in O(1)

Dynamic problem (Prefix-∨)
Input: a word w ∈ {0, 1,#} with at most one #.
Output: is there a 1 before the #?

L not almost-commutative ⇒ there are v ,w ∈ V , v · wω ̸= wω · v (simplification)
→ Wlog. v · wω ̸= wω · v · wω

Prefix-∨:

↓
L

Theorem
Maintainable in O(1) time ⇔ almost-commutative
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Conclusion

Theorem
▶ All regular languages of forests can be maintained in O(log(n)/ log log(n))

time

▶ Maintainable in O(1) time ⇔ Boolean combinations of commutative and
singleton languages

What’s next:

▶ Obtaining a trichotomy like for words
→ study the O(log log(n)) regime
→ different already for aperiodics

▶ Remove the neutral letter assumption
→ the algebraic theory of trees is less developed than for words

▶ handle modifications of the shape of the tree
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