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Introduction

How can we measure the ressources used during a computation?

• Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
• Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
• Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and
standardized units.

Sequential

• Turing Machines
• Infinite tape
• Each cell contains a single bit
• The head moves one position at a
time according to simple control
rules

Parallel

• Boolean Circuits
• Lots of processors
• Each of them computes a single bit,
using a Boolean operation

• Either uses inputs bits or result from
other processors

• Connections are fixed
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Formal definitions

Definition (Syntax)

A circuit C over the variables X =
{x1, · · · , xn} is a triple (G , λ, go) with

• a directed acyclic graph G = (V ,E )
• a labelling of nodes

λ : V → {0, 1,∧,∨,¬} ∪ X
• a distinguished ouput node go

Nodes are called gates and edges wires.

Definition (Ressources)

• size → number of gates
• wires → number of wires
• depth → maximal length of a path

(≈ execution time )
• fan-in → maximal indegree of a

gate

Gates labelled by 0 or 1 must have fan-in 0.
Gates labelled by ¬ must have fan-in 1.

Definition (Semantic)

The value vα(g) of gate g under an as-
sigment α : X → {0, 1} is defined induc-
tively by:

• λ(g) ∈ {0, 1}: λ(g)
• λ(g) = x for x ∈ V : α(g)
• λ(g) = ¬: 1 iff vα(g

′) = 0 for the
unique g ′ with (g ′, g) ∈ E

• λ(g) = ∧: 1 iff vα(g
′) = 1 for all

g ′ with (g ′, g) ∈ E
• λ(g) = ∨: 1 iff vα(g

′) = 1 for some
g ′ with (g ′, g) ∈ E

The ouput of the circuit is vα(go).
The circuit computes a function
fC : {0, 1}n → {0, 1} defined by
f (α) = vα(go).
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Formal definitions

Each circuit computes only a function of a
fixed set of variables
→ cannot consider complexity

Definition (Families)

A circuit family is a collection C =
(Cn)n≥0 of circuits, with Cn over a vari-
ables set of size n.

By convention, we usually refer to “circuit
families” simply by “circuits”.

Definition

Each circuit Cn defines a language L(Cn),
the set of words w such that fCn(w) = 1.
A circuit family C defines a language

L(C) =
⋃

n L(Cn).

No connections required between the Cn.

Example

Denote by Accn the circuit with n inputs
that always accepts (one “1” gate and no
wires). Similarly, define Rejn that always
rejects.
Consider the family C:

• Cn = Accn if the nth TM (in some
order) always halts

• Cn = Rejn otherwise
Then L(C) is undecidable but all circuits
are trivial.

Can be avoided with uniformity: a procedure
to compute the nth circuit in the family.
→ Not here
→ See the lectures on“Complexity Theory”
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Links with Turing Machines



Machines with advice

Definition (advice)

A Turing machine with advice M is a TM
with two inputs x and y , and an advice
function a : N → {0, 1}∗.
It accepts a word x if M accepts
(x , a(|x |)).

Definition (P/poly)

The complexity class P/poly is the class
of languages accepted by a TM running
in polynomial time with a polynomial size
advice.

→ A non-uniform version of P.

Theorem

L is in P/poly
⇔

L is computable by a poly-size circuit

Proof (⇐)

• Evaluating a poly-size circuit can be
done in poly time.

• The circuit is the advice.

For the converse, we admit the following for
the moment.

Lemma
There is a poly-size circuit for every lan-
guage in P.

Proof (⇒)

• Take M a P/poly TM.
• Construct Dn the circuit for M with

inputs x and y of sizes n and |a(n)|,
by the lemma.

• Take Cn to be Dn with the inputs in
y replaced by a(n).
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Lemma
There is a poly-size circuit for every language in P.

Proof

• Let M a 1-tape TM in time t(n).
• Wlog. oblivious: the direction of

the head does not depend on the
input.
→ See simulation of a TM by a
1-tape TM.

• A configuration ci at time i
consists in the state of the TM
and the symbol read by all heads.
→ ci constant size string.

• The content of a cell c at time i
only depends on the last time ji
the head was in c , which only
depends on i .

• We can compute ci+1 from ci ,
the input and cji .
→ Constant size circuit.

Input

Configuration c0

Step 1

Configuration c1

Configuration ct(n)−1

Step t(n)

Configuration ct(n)

Output
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Solving hard problems?

Claim
Showing that any L ∈ NP cannot be computed by a poly-size circuit would prove P ̸= NP.

→ Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

Proof → counting

Number of Boolean functions with n
inputs: 22

n

.
Number of circuits with n inputs and
size s: ≤ ((n + 5)2s)s .
→ Each gate has a type among n + 5
choices.
→ Each gate has 2s choices for its
parents
→ There are s gates.

For s =
√
2
n
/n, the ratio 22

n

by 2s log(n+1)+s2 tends to 1.

We still do not know any explicit such function!
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Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC0)

The class AC0 consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

→ In particular, the fan-in is unbounded.
Otherwise, the output only depends in finitely
many inputs.

Definition (NC1)

The class NC1 consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

What if we restrict the number of
communications?

Definition (WLAC0)

The class WLAC0 consists of languages
recognizable by circuits of constant depth
with linearly many wires.

→ Extremely efficient parallel algorithms.

Claim

WLAC0 ⊆ AC0 ⊆ NC1

Proof
• We can remove the gates not linked

to any wire.
• a ∨ gate of fan-in n can be trans-

formed into a binary tree of size 2n
and depth log(n).
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Adding numbers



Adding two numbers

Problem (ADD)

• Given: Two n-bits numbers x and
y

• Output: A n + 1-bits number z =
x + y

Not a language, but a function.
→ Consider circuits with several outputs (one
for each bit of the answer)
→ numbers are x = xn · · · x1 from high
weights to low weigths

Example (A circuit for ADD)

• Notation: ⊕ denotes XOR
• Idea: Computes the successive car-

ries:
• c0 = x0 ∧ y0
• ci = (xi ∧yi )∨((xi ∨yi )∧ci−1)

• The outputs are then:
• z0 = x0 ⊕ y0
• zi = xi ⊕ yi ⊕ ci−1

• zn+1 = cn

→ linear size
→ linear depth

This is roughly the sequential algorithm.
→ We can do better in parallel!
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Example (A circuit for ADD)

• Notation: ⊕ denotes XOR
• Idea: Computes the successive car-

ries:
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• ci = (xi ∧yi )∨((xi ∨yi )∧ci−1)

• The outputs are then:
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• zn+1 = cn
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A better circuit for ADD

Lemma

ADD∈ AC0

Proof
• Idea: Still computes the carries.

The carry ci is 1 iff
• a carry is created at a position j ≤ i , i.e. xj ∧ yj , and

• the carry is not lost between i and j , i.e.
∧i

l=j+1(xl ∨ yl).
• Thus:

ci =
∨i

j=0((xj ∧ yj) ∧
∧i

l=j+1(xl ∨ yl)

• As before: z0 = x0 ⊕ y0, zi = xi ⊕ yi ⊕ ci and zn+1 = cn

→ Quadratic size (by factorizing the (xj ∧ yj) and (xj ∨ yj) )
→ Constant depth
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Adding many numbers

What if we want to add several numbers in
parallel?

Problem ADDn

• Given: n many n-bits numbers
x1, . . . xn

• Output: A n + log(n)-bits number
z = x1 + · · ·+ xn

Problem ADDlog(n)

• Given: log(n) many n-bits numbers
x1, . . . xlog(n)

• Output: A n+log log(n)-bits num-
ber z = x1 + · · ·+ xlog(n)

What are their respective complexities?

Claim

ADDn∈ NC1

Proof

A binary tree of AC0 circuits for ADD.

Lemma

ADDlog(n)∈ AC0

A binary tree only gives depth log log(n)
→ next slide

Theorem

ADDn /∈ AC0

→ next lecture

The case of WLAC0 will be the topic of the
rest of this lecture.
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Adding log(n) numbers

Lemma

ADDlog(n)∈ AC0

Intuition

• Adding the following numbers. . .

x1 = 1 1 0 0 1 0 1 1
x2 = 0 0 0 1 1 0 0 1
x3 = 1 1 1 0 0 1 1 1

• . . . reduces to adding the numbers:

y1 = 1 1 0 0 1 0 1 1
y2 = 0 0 1 1 0 1 0 1

s4
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Adding log(n) numbers

Lemma

ADDlog(n)∈ AC0

Proof

• For 1 ≤ j ≤ n,

sj =
∑log(n)

i=1 j th bit of xi
→ log log(n) bits numbers.

• For 1 ≤ l ≤ log log(n), let yl be
the concatenation of the l th bits
of the sj , with l − 1 zeroes in the
end.
→ the earlier diagonal form
→ n + log log(n) bits numbers

• Clearly:
∑

i xi =
∑

l yl
• All sj and yl depends on only

log(n) bits of the input
→ they can be computed in AC0

by “brute force”

• New goal: Add log log(n) many
(n + log log(n)) bits numbers

• New new goal: Add log log log(n) many
(n + log log(n) + log log log(n)) bits
numbers

• . . .
• Last goal: Add two

n + log log(n) + · · ·+ logk(n) bits number
where k = smallest integer such that the
k-fold application of log on n is ≤ 2.

• Small computation, for n big:
log log(n) + · · ·+ logk(n) ≤ log(n)

• We just have to add two n + log(n)
numbers, that can be computed in AC0

(depends on log(n) bits of the yl)
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The power of WLAC0



Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with n inputs x1, . . . , xn and n outputs y1, . . . , yn. It is a superconcentrator
if for all k and set of indices i1 < j1 < · · · < ik < jk , there are k vertex disjoint paths from
{xi1 , . . . , xik} to {yj1 , . . . , yjk}.
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Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges.

But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

→ it has logarithmic depth.

To tackle WLAC0, we have more structure.

Theorem (Dolev, Dwork, Pippinger,
Widgerson)

There are no superconcentrator with
constant-depth and linearly many edges.

To have a lower bound against WLAC0, we
only need to prove that certain circuits have
to be superconcentrators.

We have tools for that.

Definition (Cut)

Let X and Y be two sets of vertices in a
graph. A cut between X and Y is a set
of vertices whose removal disconnect X
and Y .

Theorem (Menger)

For any two disjoints X and Y , the min-
imum size of a cut between X and Y is
also the maximum number of vertex dis-
joint paths between X and Y .

→ Can be seen as a special case of the
max-flow min-cut theorem.
→ To show that there are many vertex
disjoint paths, we must show that there are
no small cuts.
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Back to ADD
Theorem

ADD /∈ WLAC0

Proof

• Let C be a circuit for ADD with n
inputs.

• G is the graph with inputs xi and yi
merged.
→ we want to show that it is a
superconcentrator.

• Let i1 < j1 < · · · < ik < jk .
→ sets I and J.

• C ′ is C with:
• xi set to 1 and yi set to 0 for

i /∈ I
• xi and yi merged for i ∈ I

→ for i ∈ I , xi and yi must be set to
the same value.
→ k vertex disjoint paths in C ′ gives
the same in G .

• Claim: the output zjl is 0 if xil and yil
are both 1.
the output zjl is 1 if xil and yil are
both 0.
→ if xil = yil , what is on the right
does not matter.
→ a carry is created and propagated
if and only if both are 1.

• Thus there are 2k possible outcomes
for then outputs in J, depending on
the inputs in I .

• If there were a cut of size < k, there
would be < 2k possible outcomes.

• We conclude by Menger’s theorem.
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Recap

We have seen today:

WLAC0 AC0 NC1

ADD ✗ ✓ ✓

ADDlog(n) ✗ ✓ ✓

ADDn ✗ ✗ ✓

Whether ADD can be done in constant depth with linearly many nodes is a major open
problem.
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Introduction

Recall: AC0 is the class of languages
computable but constant depth and
polynomial size circuits.

We showed that it is rather powerful:

Lemma

ADDlog(n)∈ AC0

We now want to show lower bounds, i.e.
inexpressibility results.
The goal today:

Theorem

ADDn /∈ AC0

→ Not so easy!

Simplification: Go back to languages.
→ Only look at the last bit of the output.

x11 x12 x13 · · · x1n
+ x21 x22 x23 · · · x2n

...
+ xn1 xn2 xn3 · · · xnn

y1 y2 y3 · · · yn

→ yn only depends on the number of 1
among x1n , . . . , x

n
n .

Problem (Parity)

• Given: n bits x1, . . . , xn
• Output: The parity of the number

of 1 in the inputs:
∑

i xi mod 2.

Theorem (New goal)

Parity /∈ AC0
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The Parity language



Complexity of regular languages

Parity = (0∗10∗10∗)∗ is regular.

This already gives an upper bound.

Theorem

All regular languages are in NC1.

Proof

• Let A = (Q, δ, i ,F ) be an automaton.
• For w a word, δw is the extended

transition function.
• Finitely many functions Q → Q

→ can be represented by strings of
constant length.

• We have constant size circuits for:
• computing δx from a bit x ,
• function composition δ1 ◦ δ2,
• whether a function maps i to a

state in F .

w1 w2 w3 w4

δw1 δw2 δw3 δw4

δw1w2 δw3w4

δw

δw (i) ∈ F?

A binary tree of constant size circuits:
logarithmic depth and linear size
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A first easy lower bound

Definition (DNF)

A literal is a variable or its negation. A
term is a conjunction of literals. A DNF
is a disjunction of clauses.

→ depth-3 AC0 circuits.
→ Useful is practice.

Claim
Any DNF for Parity must have at least
2n−1 terms.

Optimal with
∨

w∈Parity T (w)

→ T (w) is the term with

{
xi if wi = 1
¬xi if wi = 0

Proof

• D =
∨N

i=1 Ti a DNF for Parity.
• We remove all terms with a

contradiction xj ∧ ¬xj .
• Assume one Ti has < n literals.

→ variable xj does not appear in Ti .
• Take w accepted by Ti :

→ w with xj flipped accepted by Ti .
→ it has different parity.

• Every Ti has n literals:
→ all variables appear.

• Ti accepts only one word.
• Thus D accepts at most N words.
• There are 2n−1 words in Parity.

→ N ≥ 2n−1.

Both bounds works for CNF.
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An acceleration

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC0 circuit with O(
√
n2

√
n) gates for Parity.

Proof

Idea: Compute Parity of small blocks, then compute Parity of the parities.

x1 x2 · · · · · · · · · · · · · · · xn−1 xn

√
n

√
n

DNF DNF DNF

DNF

DNF DNF DNFCNF CNF CNF

DNF’
¬ ¬ ¬

CNF CNF CNFCNF CNF CNF

DNF’

∨ ∨ ∨∨ ∨ ∨

DNF’

• So far: depth 6.
• DNF’ has no negations.
• Use De Morgan’s laws.

• Collapse the two layers of ∧.
→ depth 4

• 2
√
n + 1 circuits of size 2

√
n−1.

→ size O(
√
n2

√
n)
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An acceleration

If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC0 circuit with O(n · 2n
1

k−2
) gates for Parity.

Proof

By induction.

x1 x2 · · · · · · · · · · · · · · · xn−1 xn

n
1

k−2 n
1

k−2

DNF DNF DNFCNF CNF CNF

Ck−1

¬ ¬ ¬
∨ ∨ ∨∨ ∨ ∨

C ′
k−1

• Ck−1 of depth k with a last ∧ layer

→ has n
k−3
k−2 inputs

→ size O(n · 2n
1

k−2
)

• Collapse of two layers: depth k

• 2 · n
k−3
k−2 DNF of size 2n

1
k−2

• Total size O(n · 2n
1

k−2
).
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Proof 1: Switching lemma



A normal form

It is useful to assume that AC0 circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with

• variables or their negations as input
• d alternating layers of ∨− and ∧−

gates.

→ negations are not counted in the depth.
→ depth-2 alternating circuits are just DNFs
and CNFs.
→ the efficient circuits for Parity are already
alternating.

Claim

Every AC0 circuit of depth d can be
transformed into an alternating circuit of
depth d .

Proof

x1 x2 x3 x4

∨ ∨

∧

¬ ¬

¬

x1 x2 x3 x4

∨ ∧

∧

¬ ¬
x1 x2¬x2 ¬x3 x4

∨ ∧

∧

x1 x2¬x2 ¬x3 x4

∨ ∧

∧
∨

x1 x2¬x2 ¬x3 x4

∨ ∧

∧

∧ ∧

∨

∧
∨

• Push negations to the leaves (po-
tentially duplicating gates).

• Fill with dummy gates between
gates of the same type.

• Layer with dummy gates.
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Depth reduction

Idea for lower bound for alternating circuits:

• We have shown that alternating of
depth 2 cannot compute Parity.

• We want to show that if Parity is
computed by a depth k circuits, then it
can be computed by a depth k − 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
≥ 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
• By alternation, all parents of the

CNFs are ∨-gates.
• After replacement, we can merge

these ∨ with the DNF ones.

Example

x1 ¬x1 x2 ¬x2 x3

∨ ∨ ∨ ∨

∧ ∧
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∨

• (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)
≡ (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

• (¬x1 ∨ x3) ∧ (¬x2 ∨ x3)
≡ (¬x1 ∧ ¬x2) ∨ (x3)

Definition (t-CNF)

A t-CNF is a CNF with t clauses.
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Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Example

(x1 ∨ x2)∧ (x3 ∨ x4)∧ · · · ∧ (x2n−1 ∨ x2n)
has only DNFs of size ≥ 2n.

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.
Intuition: ∨ and ∧ gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables X is a
mapping

ρ : X → {0, 1, ∗}.
→ ∗ means that the variable is unassigned.
→ for f a Boolean function over X , a
restriction ρ defines a subfunction fρ.

Definition
A l-restriction is a restriction that assigns
∗ to exactly l variables.

→ fρ has l variables for such ρ.
→ we will draw such restrictions uniformly.

Definition (t-CNF and s-DNF)

A t-CNF is a CNF with t clauses.
A s-DNF is a DNF with s clauses.

Theorem (Switching lemma)

For 0 ≤ p ≤ 1 and f a Boolean function
f with n variables that can be expressed
as a t-CNF:

Pρ(fρ has no s-DNF) ≤ (8pt)s

where the probability is taken over all
pn-restrictions.

→ Admitted.
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Theorem (Furst, Saxe and Sipser, and Håstad)

All depth-k circuits for Parity have size at least 2Ω(n
1

k−1 ).

Proof

• By induction: we have proved the case k = 2 already.
• Assume a depth-(k + 1) circuit of size S for Parity.
• Wlog. the first layer has ∨-gates.
• We want to apply the switching lemma:

→ but the fan-in of the first layer can be big.
• We proceed in two steps:

• Step 1: fan-in reduction of the first layer.
• Step 2: depth reduction.

• Key idea: Subfunctions of Parityare Parityitself or its negation.
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Theorem (Furst, Saxe and Sipser, and Håstad)

All depth-k circuits for Parity have size at least 2Ω(n
1

k−1 ).

Proof (Step 1: fan-in reduction)
• The circuit has depth k + 1, size S

and the first layer has ∨-gates.

• Set m = 2 log S .
• The gates of the first layer can be

seen as 1-DNFs
• We can apply the switching lemma

with
• t = 1
• s = m
• p = 1

16

• The probability that a chosen ∨-gate cannot
be turned into a s-CNF is at most:
≤ (8pt)s = 1

2s = 1
S2

→ Union bound: with probability < 1 at
least one the gate of the first layer cannot
be turned into a s-CNF.
→ There is a pn-restriction for which all
∨-gates can be turned into s-CNFs.

• After collasping the ∧-gates, we have a
circuit for Parity with:

• depth k + 1
• size at most S2

• fan-in of the first layer at most m
• has n

16 variables.

9/16



Theorem (Furst, Saxe and Sipser, and Håstad)
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Theorem (Furst, Saxe and Sipser, and Håstad)

All depth-k circuits for Parity have size at least 2Ω(n
1

k−1 ).

Proof (Step 2: depth reduction)
• The circuit has depth k + 1, size S

and the first layer has ∨-gates.

• Set m = 2 log S .
• We can apply the switching lemma

to the CNFs of the second layer
with

• t = m
• s = m
• p = 1

16m

• The probability that a chosen ∧-gate cannot
be turned into a s-DNF is at most:
≤ (8pt)s = 1

2s = 1
S2

→ Union bound: with probability < 1 at
least one the gate of the second layer
cannot be turned into a s-DNF.
→ There is a pn-restriction for which all
∧-gates can be turned into s-DNFs.

• After collasping the ∧-gates, we have a
circuit for Parity with:

• depth k
• size at most S2

• has n
162m variables.

• By induction: S2 ≤ 2(
n

162m
)1/(k−1)

, which gives log(S) ≤ ckn
1
k for a constant ck .
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Proof 2: Polynomial approximation



Polynomials

Polynomials are simpler objects than circuits.
→ algebraic instead of combinatoric.

Proof Idea

1) Capture functions computed by AC0

circuits by simple polynomials.
2) Show that Parity cannot be cap-

tured by such simple polynomials.

1st try: Boolean polynomials.
+ = ∨ × = ∧

→ circuits without sharing
→ Not helping
→ We want a field.
2nd try: polynomials over F2.

0 + 1 = 1 + 0 = 1
0 + 0 = 1 + 1 = 0

→ Parity is
∑n

i=1 xi
→ One of the simplest polynomial.
→ Not a chance to have 2).

3rd try: polynomials over F3 = {0, 1, 2}.
+ and × are the usual mod 3

→ What do we do with 2?

Definition

A Boolean function f (x) is represented
by a polynomial p(x) over F3 if f (a) =
p(a) for all a with only 0 and 1.

Example

Parity = (
∏n

i=1(xi + 1))− 1

→ We look at the degree.
→ It looks that Parity needs high degree.

Example

¬x = 1− x∨n
i=1 xi = 1−

∏n
i=1(2xi + 1)

→ Seems that ∨ also needs high degree...
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Last try: the approximation technique

Idea: Relax the notion of representation.
→ we will approximate circuits with
polynomials over F3.

Proof Idea

1) Approximate functions computed
by AC0 circuits by low-degree poly-
nomials over F3.

2) Parity cannot be approximated by
low-degree polynomials over F3.

Approximate means being correct on many
inputs.

Definition

For f (x) a function with n inputs and p
a polynomial:
distance(f , p) = |{a ∈ {0, 1}n | p(a) ̸=
f (a)}|

Formalization of 1):

Lemma
Let C be a circuit of depth d and size
M that computes a function f .
Then, for 1 ≤ r ≤ n, there is a polyno-
mial p of degree ≤ (2r)d such that:

distance(f , p) ≤ M · 2n−r .

→ proved later.

Formalization of 2):

Lemma
There is a constant c > 0 such that ev-
ery polynomial of degree ≤

√
n satisfies:

distance(Parity, p) ≥ c · 2n.
→ Admitted.
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Parity /∈ AC0

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least 2Ω(n
1
2d ).

Lemma
Let C be a circuit of depth d and size
M that computes a function f .
Then, for 1 ≤ r ≤ n, there is a polyno-
mial p of degree ≤ (2r)d such that:

distance(f , p) ≤ M · 2n−r .

Lemma
There is a constant c > 0 such that ev-
ery polynomial of degree ≤

√
n satisfies:

distance(Parity, p) ≥ c · 2n.

Proof
• Let C be a circuit for Parity of depth d and size M.
• With r = n

1
2d /2: there is p of degree ≤

√
n such that:

distance(Parity, p) ≤ M · 2n−n1/2d/2.
• distance(Parity, p) ≥ c · 2n.
• Thus, c · 2n ≤ M · 2n−n1/2d/2.
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Lemma

For 1 ≤ r ≤ n, there is a polynomial p of degree ≤ (2r)d such that:

distance(f , p) ≤ M · 2n−r .

Proof by induction, we approximate gates in
the circuit and combine them top-down.
→ Wlog. there are no ∧-gates.

Claim
For 1 ≤ r ≤ n, there is a poly-
nomial p∨ of degree ≤ 2r such that
distance(∨, p∨) ≤ 2n−r

→ Proof next slide

Proof
We approximate inductively every gate g
by pg :

• An input gate xi by xi .
• A ¬-gate ¬h by 1− ph.
• A ∨-gate

∨m
k=1 hk by

p∨(ph1 , . . . , phm).

Degree bound:
• ¬-gates do not increase the degree.
• ∨-gates multiply the degree by 2r :

deg(pg ) ≤ 2r ·max(deg(phk )).
• For a gate at depth i , deg(g) ≤

(2r)i .

Distance bound:
• ¬-gates do not introduce errors.
• for a ∨-gate, assume phk is wrong

for at most Mk · 2n−r inputs, where
Mk is the size of the subcircuit of
hk .
Then pg is wrong for at most (M1+
· · ·+Mk + 1) · 2n−r inputs.
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Claim

For 1 ≤ r ≤ n, there is a polynomial p∨ of degree ≤ 2r such that distance(∨, p∨) ≤ 2n−r

→ The return of the probabilistic method.

Proof
1) Define a polynomial p for all c ∈ FN

3

uniformly drawn.
2) Show that for all a:

Pc [p(a) ̸= ∨(a)] ≤ 3−r .
3) Define the random variable for the

distance between p and ∨:
X =

∑
a∈{0,1}n 1p(a)̸=∨(a).

Its expectancy is
≤

∑
a∈{0,1}n 3−r ≤ 2n−r .

4) There is a c such that
distance(∨, p) ≤ 2n−r .

• For c ∈ Fn
3 define:

p(x) = (c1x1 + · · ·+ dnxn)
2

→ Always in {0, 1}: 02 = 0 and
12 = 22 = 1.

• Fix some a:
• if ∨(a) = 0 then p(a) = 0, hence we

have 2).
• if ∨(a) = 1, then

p(a) = (di1 + · · ·+ dim)
2 for some

indices.
→ the components are independent
thus the sum has the same probability
of being 0,1 or 2.
→ Thus we have 2).

• This proves the claim for r = 1.
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Recap

We have seen:
• Reduction from ADDn to Parity.

• Every regular language is in NC1.
• Parity can be rather efficiently computed but we have one of the highlights of complexity:

Theorem

Parity /∈ AC0

• Two different proofs:
• Reducing the depth iteratively with random restrictions: switching lemma.
• Approximate AC0 circuits by low-degree polynomials.
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Corentin Barloy Michael Walter Thomas Zeume



Introduction

Why studying regular languages from the point-of-view of circuit complexity?

→ regular languages are everywhere (linguistics, text processing/editing, bioinformatics, . . .)
→ optimizing them is important
→ complexity under P: sequential vs parallel

→ Many classes’s behaviours are reflected on the regular languages it computes. (under NC1.)

Separation

Definition (Separator)

A separator for a class C2 from a class C1
is a language L that belongs in C2/C1.

→ We want to find separators to compare
the expressive power of classes.

Completness

Definition (Reduction)

A projection from L1 to L2 is a circuit that
computes L1 with a single gate labelled
by L2. It is polynomial if the fan-in of the
gate is polynomial.

Definition (Completeness)

A language L is complete under projec-
tions for a class C if L ∈ C and there is a
projection from every language in C to L.

Many separators and complete languages can be chosen regular.
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Importance of regular languages



Separation

Parity is a regular separator for NC1 from
AC0.

→ Can we express all of NC1 using Parity
gates for free?

Definition (Modular languages)

For m ∈ N, the language of binary strings
with an number of 1 divisible by m is
denoted by Modm.

Definition (AC0 with counting)

For m ∈ N, ACC0[m] is the class of lan-
guages computable by an AC0 circuits
with some gates labelled by Modm.
If it can use any Modm gates, it gives the
class ACC0.

Theorem (Razborov, Smolenski)

For primes p ̸= q, Modq is not in
ACC0[p].

→ Similar proof as last lecture.
→ Gives regular separators for
AC0 ⊊ ACC0[p] ⊊ NC1 for a prime p.

Now is ACC0 = NC1? We do not know but:

Example (S5)

q0 q1 q2

q3q4

a a

a

a, b

a
b

b bb

Theorem (Barrington)

S5 is complete under projections for
NC1.

→ If there is a separator for NC1 from ACC0,
then there is one regular.
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Below AC0

Let us look at the depth hierarchy of AC0.

Definition
For d ∈ N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output ∨-
gate (resp. ∧-gate) is denoted Σd (resp.
Πd).

→ AC0 =
⋃

i Σi =
⋃

i Πi

Are some of these classes equal?

Definition
We define regular languages over an al-
phabet Σd = {0, 1, #1, . . . , #d−1}.

• O1 = 0∗10∗

• A1 = 1∗

• Od+1 = Σ∗
d+1#dAd#dΣ

∗
d+1

• Ad+1 = (#dOd)
∗#d

→ Od = Σ∗
d/Ad

Theorem

Od (resp. Ad) is complete under projec-
tions for Σd (resp. Πd).

→ proof next slide.
→ Another regular languages that are
complete for a natural class.

Do they also separates the hierarchies?

Theorem (Sipser, Håstad)

Od is not in Σd−1 ∪ Πd .
Ad is not in Σd ∪ Πd−1.

→ proof by switching lemma
→ Unlike Parity, random restrictions easily
make Od and Ad trivial.
→ We need to draw random restrictions with
a carefully chosen distribution.
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Proof of completeness

Theorem

Od (resp. Ad) is complete under projections for Σd (resp. Πd).

Proof (Od and Ad are in Σd)

• By induction:
• O1 is the ∨ function and A1 is the ∧ function.

• Let Cd be a circuit in Πd for Ad .
• Then Od+1 can be computed by:∨

i<j

#d(i) ∧ #d(j) ∧ Cd [i , j ]

• The extra ∧ are absorbed by Cd

• There is a quadratic number of poly size circuits.

• Ad is the complement of Od : the negation of that circuit gives a Πd circuit for Ad .
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x1 x2 x3 x4 x5
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∧ ∧

∨

x1 x2 x3 x4 x5
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∧ ∧

∨

x1x2 x2x3 x2x4 x2x3 x2x4 x4x5

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧

∨

x1x2#1x2x3#1x2x4#2x2x3#1x2x4#1x4x5

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧

∨

x1 x2 x3 x4 x5

x1x2#1x2x3#1x2x4#2x2x3#1x2x4#1x4x5

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧

∨

O3

• Remove sharing. → remains of poly size
• Duplicate and order variables.
• Add delimiters.
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ADD and AC0

ADD is regular:

→ there is a finite automata that take a
string

(
x1
y1

)
· · ·

(
xn
yn

)
and outputs x + y .

Example (
0
0

)
| 0

(
0
1

)
,
(
1
0

)
| 1

(
1
1

)
| 1

(
0
1

)
,
(
1
0

)
| 0

(
1
1

)
| 0

(
0
0

)
| 1

ADD is complete for AC0 for a strong notion
of reduction (but not projections).

Theorem

Every AC0 language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

Proof
• Wlog. only ¬ and ∧ gates.
• ¬-gate: ¬x is the least significant

bit of 1 + x .
• ∧-gate:

∧n
i=1 xi is the most signifi-

cant bit of x1 · · · xn + 1.
• One ADD gate per layer, thanks to

double zeroes.
• If we have a layer:

x1 x2 x3 x4 x5 x6

∧ ¬ ∧
• Then we use:

0 x1 x2 0 x3 0 x4 x5 x6
+ 0 0 1 0 1 0 0 0 1
↓ ↓ ↓
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ADD gates of polynomial fan-in, and no
other gates.

Proof
• Wlog. only ¬ and ∧ gates.
• ¬-gate: ¬x is the least significant

bit of 1 + x .
• ∧-gate:

∧n
i=1 xi is the most signifi-

cant bit of x1 · · · xn + 1.
• One ADD gate per layer, thanks to

double zeroes.
• If we have a layer:

x1 x2 x3 x4 x5 x6

∧ ¬ ∧
• Then we use:

0 x1 x2 0 x3 0 x4 x5 x6
+ 0 0 1 0 1 0 0 0 1
↓ ↓ ↓
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An algebraic toolbox



A new object

Definition (Monoids)

A monoid is a triplet (M, ·, 1) where:
• M is a set.
• · is an operation M ×M → M that

is associative ((x ·y) ·z = x ·(y ·z)).
• 1 is a neutral element of M (1 · x =

x · 1 = x).

→ A generalization of groups.
→ Usually denoted by the base set M.

Examples

• (N,+, 0)
• (N,×, 1)
• ({0, 1},∧, 1)
• ({0, 1},∨, 0)
• (Σ∗, concat, ϵ)
• (f : S → S , ◦, Id)

Definition (Morphisms)

A morphism from M to N is a function
µ : M → N such that:

• µ(1M) = 1N
• µ(x ·M y) = µ(x) ·N µ(y)

Examples

• x 7→ 2x is a morphism from (N,+)
to itself.

• The length function is a morphism
from Σ∗ to (N,+).

• The function Σ∗ → ({0, 1},∨) that
maps a word to 1 if and only if it
has some letter a is a morphism.
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Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism µ : Σ∗ → M and P ⊆ M
such that L = µ−1(P).

→ Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
• A = (Q, δ, i ,F ) DFA for L.
• δw is the extended transition function

when reading w .
• Let M the set of functions

δw : Q → Q with the composition.
→ it is finite.

• Let µ : Σ∗ → M that maps w to δw .
→ it is a morphism.

• Let P = {f | f (i) ∈ F}.
→ recognizes L.

• µ : Σ∗ → M such that L = µ−1(P).
• Construct A with:

• Q = M
• δa(x) = x · µ(a)
• i = 1
• F = P

• Invariant: δw (i) = µ(w).

→ This is the transition monoid of A. It makes more structure visible.
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A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition
The syntactic relation of L is the relation
on Σ∗ defined by u ∼L v iff for all x , y ,

xuy ∈ L⇔ xvy ∈ L.

→ an equivalence relation.
→ Meaning: we can replace u by v anywhere
without changing membership in L.

Definition
The syntactic monoid ML of L is the
set of equivalence classes of ∼L equiped
with: for C1,C2 ∈ ML, and u ∈ C1 and
v ∈ C2, C1 · C2 is the class of uv .

→ We have to check that this is well defined:
the class C1 · C2 does not depend on the
choice of u and v .

Claim

If u ∼L u′ and v ∼L v ′, then uv ∼L u′v ′.

Proof
• Let x , y such that xuvy ∈ L.
• Equivalent to xu′vy ∈ L by u ∼L u′.
• Equivalent to xu′v ′y ∈ L by v ∼L v ′.

Example

Consider Parity. Its syntactic relation has
two classes:

• words with an even number of 1.
• words with an odd number of 1.

Its syntactic monoid is the group Z/2Z.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

• words with a 1.
• words without a 1.

Its syntactic monoid is ({0, 1},∨).
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Definition
The syntactic monoid ML of L is the
set of equivalence classes of ∼L equiped
with: for C1,C2 ∈ ML, and u ∈ C1 and
v ∈ C2, C1 · C2 is the class of uv .

→ We have to check that this is well defined:
the class C1 · C2 does not depend on the
choice of u and v .

Claim

If u ∼L u′ and v ∼L v ′, then uv ∼L u′v ′.

Proof
• Let x , y such that xuvy ∈ L.
• Equivalent to xu′vy ∈ L by u ∼L u′.
• Equivalent to xu′v ′y ∈ L by v ∼L v ′.

Example

Consider Parity. Its syntactic relation has
two classes:

• words with an even number of 1.
• words with an odd number of 1.

Its syntactic monoid is the group Z/2Z.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

• words with a 1.
• words without a 1.

Its syntactic monoid is ({0, 1},∨).

8/15



A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition
The syntactic relation of L is the relation
on Σ∗ defined by u ∼L v iff for all x , y ,

xuy ∈ L⇔ xvy ∈ L.

→ an equivalence relation.
→ Meaning: we can replace u by v anywhere
without changing membership in L.

Definition
The syntactic monoid ML of L is the
set of equivalence classes of ∼L equiped
with: for C1,C2 ∈ ML, and u ∈ C1 and
v ∈ C2, C1 · C2 is the class of uv .

→ We have to check that this is well defined:
the class C1 · C2 does not depend on the
choice of u and v .

Claim

If u ∼L u′ and v ∼L v ′, then uv ∼L u′v ′.

Proof
• Let x , y such that xuvy ∈ L.
• Equivalent to xu′vy ∈ L by u ∼L u′.
• Equivalent to xu′v ′y ∈ L by v ∼L v ′.

Example

Consider Parity. Its syntactic relation has
two classes:

• words with an even number of 1.
• words with an odd number of 1.

Its syntactic monoid is the group Z/2Z.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

• words with a 1.
• words without a 1.

Its syntactic monoid is ({0, 1},∨).

8/15



A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition
The syntactic relation of L is the relation
on Σ∗ defined by u ∼L v iff for all x , y ,

xuy ∈ L⇔ xvy ∈ L.

→ an equivalence relation.
→ Meaning: we can replace u by v anywhere
without changing membership in L.

Definition
The syntactic monoid ML of L is the
set of equivalence classes of ∼L equiped
with: for C1,C2 ∈ ML, and u ∈ C1 and
v ∈ C2, C1 · C2 is the class of uv .

→ We have to check that this is well defined:
the class C1 · C2 does not depend on the
choice of u and v .

Claim

If u ∼L u′ and v ∼L v ′, then uv ∼L u′v ′.

Proof
• Let x , y such that xuvy ∈ L.
• Equivalent to xu′vy ∈ L by u ∼L u′.
• Equivalent to xu′v ′y ∈ L by v ∼L v ′.

Example

Consider Parity. Its syntactic relation has
two classes:

• words with an even number of 1.
• words with an odd number of 1.

Its syntactic monoid is the group Z/2Z.

Example

Consider the language of words with a 1.

Its syntactic relation has two classes:
• words with a 1.
• words without a 1.

Its syntactic monoid is ({0, 1},∨).

8/15



A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition
The syntactic relation of L is the relation
on Σ∗ defined by u ∼L v iff for all x , y ,

xuy ∈ L⇔ xvy ∈ L.

→ an equivalence relation.
→ Meaning: we can replace u by v anywhere
without changing membership in L.

Definition
The syntactic monoid ML of L is the
set of equivalence classes of ∼L equiped
with: for C1,C2 ∈ ML, and u ∈ C1 and
v ∈ C2, C1 · C2 is the class of uv .

→ We have to check that this is well defined:
the class C1 · C2 does not depend on the
choice of u and v .

Claim

If u ∼L u′ and v ∼L v ′, then uv ∼L u′v ′.

Proof
• Let x , y such that xuvy ∈ L.
• Equivalent to xu′vy ∈ L by u ∼L u′.
• Equivalent to xu′v ′y ∈ L by v ∼L v ′.

Example

Consider Parity. Its syntactic relation has
two classes:

• words with an even number of 1.
• words with an odd number of 1.

Its syntactic monoid is the group Z/2Z.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

• words with a 1.
• words without a 1.

Its syntactic monoid is ({0, 1},∨).

8/15



A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition
The syntactic relation of L is the relation
on Σ∗ defined by u ∼L v iff for all x , y ,

xuy ∈ L⇔ xvy ∈ L.

→ an equivalence relation.
→ Meaning: we can replace u by v anywhere
without changing membership in L.

Definition
The syntactic monoid ML of L is the
set of equivalence classes of ∼L equiped
with: for C1,C2 ∈ ML, and u ∈ C1 and
v ∈ C2, C1 · C2 is the class of uv .

→ We have to check that this is well defined:
the class C1 · C2 does not depend on the
choice of u and v .

Claim

If u ∼L u′ and v ∼L v ′, then uv ∼L u′v ′.

Proof
• Let x , y such that xuvy ∈ L.
• Equivalent to xu′vy ∈ L by u ∼L u′.
• Equivalent to xu′v ′y ∈ L by v ∼L v ′.

Example

Consider Parity. Its syntactic relation has
two classes:

• words with an even number of 1.
• words with an odd number of 1.

Its syntactic monoid is the group Z/2Z.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

• words with a 1.
• words without a 1.

Its syntactic monoid is ({0, 1},∨).
8/15



Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

→ ML is finite and recognizes L.

Proof
• A = (Q, δ, i ,F ) minimal DFA for L.
→ satisifes p = q whenever
δx(p) ∈ F ⇔ δx(q) ∈ F for all x .

• We need: u ∼L v iff δu = δv .
• ⇐: if δu = δv .

• For x , y , assume xuy ∈ L.
• Thus δxuy (i) ∈ F .
• Thus δxvy (i) ∈ F .
• Thus xvy ∈ L.
• Hence u ∼L v .

• ⇒: if u ∼L v .
• Let p ∈ Q: by minimality, there

is x such that δx(i) = p.
• For all y , we have

xuy ∈ L⇔ xvy ∈ L.
• Thus, δuy (p) ∈ F ⇔ δvy (p) ∈ F .
• Thus,

δy (δu(p)) ∈ F ⇔ δy (δv (p)) ∈ F .
• By minimality, δu(p) = δv (p).
• Hence, δu = δv .

→ Also gives an algorithm to compute ML.
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An example

The syntactic monoid is generated by δa and δb: every element can be obtained are a product
of these two.

→ We can only describe the multiplication by δa and δb.

Computation of the syntactic monoid of (a+ b)∗(aa+ bb)(a+ b)∗.

Minimal automaton

1

2

3

4
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b

a

b

a b

a,b

Syntactic monoid

1 2 3 4

1 2 3 4
δa 4 2 4
δb 3 4 4

4 4 4 4
3 4 3 4
2 2 4 4

δb · δb = δaa
δaa · δa = δaa
δaa · δb = δaa
δab · δa = δa
δab · δb = δaa
δba · δa = δaa
δba · δb = δb
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Idempotents

Definition
An idempotent is an element x ∈ M such
that x2 = x .

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x ∈ M, there is an i ∈ N such
that x i is idempotent.

Proof

• Take the sequence of x i for any i .
• Pigeonhole: there is some x i =

x i+p.
• For all j ≥ i , x j = x j+p.
• For j = kp, xkp = xkp+p.
• xkp is idempotent.

→ It is unique: if x i and x j are idempotents
then x i = x ij = x j .
→ We denote it xω.

The case p = 1 is particularly interesting.

Definition
A monoid M is aperiodic if for every x ∈
M, we have

xω+1 = xω

→ Intuition: M cannot count.
→ A language L is aperiodic if ML is.

Example

Parity and Z/2Z are not aperiodic: 1ω =
0 and 1ω+1 = 1.

→ For any m ∈ N, Modm is also not
aperiodic.

Example

Σ∗aΣ∗ and ({0, 1},∨) are aperiodic:
0ω = 0ω+1 = 0 and 1ω = 1ω+1 = 1.
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The regular languages of AC0



Star-free languages

Claim

AC0 languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
• A ∨-gate for union.
• A ∧-gate for intersection.
• A ¬-gate for complement.

Claim

AC0 languages are close under concate-
nation.

Proof
• Circuits C1 and C2 for L1 and L2.
• Guess the split position.
• L1 · L2 computed by:∨n

i=0 C1[1, i ] ∧ C2[i + 1, n].
• 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the
Kleene star of an AC0 language.

Definition
A language is star-free if it is expressible
with a regular expression with only:

• ∅, ϵ and a for a ∈ Σ,
• union,
• complement,
• concatenation.

→ Complement needed to have infinite
languages.

Examples

• Σ∗ = ∅c .
• a∗ = (∅cb∅c)c .
• (ab)∗ = (b∅c + ∅ca + ∅caa∅c +
∅cbb∅c)c .

Claim

star-free ⊆ AC0
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An algebraic characterization

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

Proof (⇒)
• Induction on the expression.
• M∅ = {1}.
• Mϵ = ({0, 1},∨).
• For a ∈ Σ, Ma = {0, 1, 2} with

x · y = min(x + y , 2).
• For any L, ∼L=∼Lc thus MLc = ML.

• For the last two case, let L1 and L2
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The theorem
A small technicality:

Definition
A language L has a neutral letter c if c can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

L ∈ AC0 ⇔ L is star-free.

Proof
• L a regular language with a neutral

letter that is not star-free.
• It is not aperiodic: there is x ∈ ML st

xω+1 ̸= xω.
• Let q the smallest integer st

xω+q = xω.
• We want to reduce Modq to L.
• Modq /∈ AC0 ⇒ L /∈ AC0.
• We prove the case q = 2.

• Let u, v st (wlog.) uxωv ∈ L and
uxω+1v /∈ L.

• Assume that xω and xω+1 have same
size (thanks to the neutral letter).

• Let f that send 0 to xω and 1 to
xω+1;

• The reduction send w to
uf (w0) · · · f (wn)v .

• This word is equivalent to
uxω+Parityc (w)v .

• This is in L iff Parity(w) = 0.

Without a neutral letter, (aa)∗ is not star-free but is in AC 0.
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Let L be a regular language with a neutral letter, then

L ∈ AC0 ⇔ L is star-free.

Proof
• L a regular language with a neutral

letter that is not star-free.
• It is not aperiodic: there is x ∈ ML st

xω+1 ̸= xω.
• Let q the smallest integer st

xω+q = xω.
• We want to reduce Modq to L.
• Modq /∈ AC0 ⇒ L /∈ AC0.
• We prove the case q = 2.

• Let u, v st (wlog.) uxωv ∈ L and
uxω+1v /∈ L.

• Assume that xω and xω+1 have same
size (thanks to the neutral letter).

• Let f that send 0 to xω and 1 to
xω+1;

• The reduction send w to
uf (w0) · · · f (wn)v .

• This word is equivalent to
uxω+Parityc (w)v .

• This is in L iff Parity(w) = 0.

Without a neutral letter, (aa)∗ is not star-free but is in AC 0.

14/15



The theorem
A small technicality:

Definition
A language L has a neutral letter c if c can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
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Going further

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (di , li ) with di ∈ {→,←} and li ∈ Σ.
The turle starts at position 1 and, for each instruction, moves on the direction di until it
reaches a letter li . It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of WLAC0 are precisely the Boolean combination
of turtle programs.

Definition
A subword language is a language L for which there exists u such that L is the set of words
that have u as a subword.

Theorem
The regular languages with a neutral letter that can be computed by k-DNFs with constant
k are precisely the Boolean combination of subword languages.

→ Can be extended to depth-3 but not depth-4 so far.
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