Boolean circuits and efficient addition

Corentin Barloy Michael Walter Thomas Zeume

RUHR
UNIVERSITAT
BOCHUM

Introduction

How can we measure the ressources used during a computation?

1/16

Introduction

How can we measure the ressources used during a computation?
e Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
e Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
e Heavily depends on interactions between the two (e.g. the compilation procedure).

1/16

Introduction

How can we measure the ressources used during a computation?
e Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
e Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
e Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and
standardized units.

1/16

Introducti

on

How can we measure the ressources used during a computation?
e Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
e Heavily depends on the language (Python, C++, Makefiles, assembly, ...)

e Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and

Sequential

standardized units.

Parallel

1/16

Introduction

How can we measure the ressources used during a computation?
e Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
e Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
e Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and
standardized units.

Sequential Parallel

e Turing Machines

o Infinite tape

e Each cell contains a single bit

e The head moves one position at a
time according to simple control
rules

1/16

Introduction

How can we measure the ressources used during a computation?
e Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
e Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
e Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and

standardized units.

Sequential

Parallel

e Turing Machines

o Infinite tape

e Each cell contains a single bit

e The head moves one position at a
time according to simple control
rules

e Boolean Circuits

e Lots of processors

e Each of them computes a single bit,
using a Boolean operation

e Either uses inputs bits or result from
other processors

e Connections are fixed

1/16

Boolean circuits

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

\
\/
AN !

outputs 1 &/ =

2/16

A first circuit

V

outputs 1 & /=

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

\
GD’///////
cp\\\\\\\
1»’///////

2/16

A first circuit

2/16

A first circuit

2/16

A first circuit

Computes Z*(oo + 11)2* A T4

2/16

A first circuit

\ -
l””/////’
\
/

V
V

Computes >*(00 + 11)x*

2/16

A first circuit
size(n)

o— "~

= number of gates

AR

wire(n)= number of wires
depth(n) = maximal length of a path
fan-in(n) = maximal in-degree of a gate

4

J

V

\:/

Computes >*(00 + 11)x*

\

2/16

A first circuit

size(n) =

wire(n) =

size(n) = number of gates wire(n)= number of wires
depth(n) = maximal length of a path
fan-in(n) = maximal in-degree of a gate

il 2 3 i4
V V, v
\\\\\\\\\\\\\\\\ | ////////////////
Computes (00 + 11)x*
9(n(:7 1_);; 1 depth(n) = 4 fan-in(n) = n—1

2/16

Formal definitions

Definition (Syntax)
A circuit C over the variables X =
{x1, - ,xn} is a triple (G, X\, g,) with
e adirected acyclic graph G = (V, E)
e a labelling of nodes
AV —={0, 1A V,m}UX
e a distinguished ouput node g,

3/16

Formal definitions

Definition (Syntax)
A circuit C over the variables X =
{x1, - ,xn} is a triple (G, X\, g,) with
e adirected acyclic graph G = (V, E)
e a labelling of nodes
AV —={0, 1A V,m}UX
e a distinguished ouput node g,

Nodes are called gates and edges wires.

3/16

Formal definitions

Definition (Syntax)
A circuit C over the variables X =
{x1, - ,xn} is a triple (G, X\, g,) with
e adirected acyclic graph G = (V, E)
e a labelling of nodes
AV —={0, 1A V,m}UX
e a distinguished ouput node g,

Nodes are called gates and edges wires.

Definition (Ressources)

e size — number of gates

wires — number of wires

depth — maximal length of a path

(~ execution time)

e fan-in — maximal indegree of a
gate

3/16

Formal definitions

Definition (Syntax)
A circuit C over the variables X =
{x1, - ,xn} is a triple (G, X\, g,) with
e adirected acyclic graph G = (V, E)
e a labelling of nodes
AV —={0, 1A V,m}UX
e a distinguished ouput node g,

Nodes are called gates and edges wires.

Definition (Ressources)

e size — number of gates

wires — number of wires

depth — maximal length of a path

(~ execution time)

e fan-in — maximal indegree of a
gate

Gates labelled by 0 or 1 must have fan-in 0.
Gates labelled by — must have fan-in 1.
3/16

Formal definitions

Definition (Syntax)
A circuit C over the variables X =
{x1, - ,xn} is a triple (G, X\, g,) with
e adirected acyclic graph G = (V, E)
e a labelling of nodes
AV —={0, 1A V,m}UX
e a distinguished ouput node g,

Nodes are called gates and edges wires.

Definition (Ressources)

e size — number of gates

e wires — number of wires

e depth — maximal length of a path
(~ execution time)

e fan-in — maximal indegree of a
gate

Definition (Semantic)

The value v,(g) of gate g under an as-

sigment o : X — {0,1} is defined induc-

tively by:

e \(g) €{0,1}: A(g)

o \g)=xforxeV: a(g)

o \g) = 1iff vo(g’) = 0 for the
unique g’ with (g’,g) € E

o A(g) = A: 1iff vp(g’) =1 for all
g’ with (g, g) € E

o \(g) =V: Liff vo(g’) = 1 for some
g’ with (g’,g) € E

Gates labelled by 0 or 1 must have fan-in 0.

Gates labelled by — must have fan-in 1.

3/16

Formal definitions

Definition (Syntax)
A circuit C over the variables X =
{x1, - ,xn} is a triple (G, X\, g,) with
e adirected acyclic graph G = (V, E)
e a labelling of nodes
AV —={0, 1A V,m}UX
e a distinguished ouput node g,

Nodes are called gates and edges wires.

Definition (Ressources)

e size — number of gates

e wires — number of wires

e depth — maximal length of a path
(~ execution time)

e fan-in — maximal indegree of a
gate

Definition (Semantic)

The value v,(g) of gate g under an as-

sigment o : X — {0,1} is defined induc-

tively by:

e \(g) €{0,1}: A(g)

o \g)=xforxeV: a(g)

o \g) = 1iff vo(g’) = 0 for the
unique g’ with (g’,g) € E

o A(g) = A: 1iff vp(g’) =1 for all
g’ with (g, g) € E

o \(g) =V: Liff vo(g’) = 1 for some
g’ with (g’,g) € E

Gates labelled by 0 or 1 must have fan-in 0.

Gates labelled by — must have fan-in 1.

The ouput of the circuit is v, (go)-
The circuit computes a function
fc :{0,1}" — {0,1} defined by
f(a) = va(go)-

3/16

Formal definitions
Each circuit computes only a function of a

fixed set of variables
— cannot consider complexity

4/16

Formal definitions

Each circuit computes only a function of a
fixed set of variables
— cannot consider complexity

Definition (Families)

A circuit family is a collection C =
(Cn)n>o0 of circuits, with C, over a vari-
ables set of size n.

4/16

Formal definitions

Each circuit computes only a function of a
fixed set of variables
— cannot consider complexity

Definition (Families)

A circuit family is a collection C =
(Cn)n>o0 of circuits, with C, over a vari-
ables set of size n.

By convention, we usually refer to “circuit
families” simply by “circuits”.

4/16

Formal definitions

Each circuit computes only a function of a
fixed set of variables
— cannot consider complexity

Definition (Families)

A circuit family is a collection C =
(Cn)n>o0 of circuits, with C, over a vari-
ables set of size n.

By convention, we usually refer to “circuit
families” simply by “circuits”.

Definition

Each circuit C, defines a language L(C,),

the set of words w such that 7 (w) = 1.
A circuit family C defines a language

L(C) = U, L(Ca)-

4/16

Formal definitions

Each circuit computes only a function of a
fixed set of variables
— cannot consider complexity

Definition (Families)

A circuit family is a collection C =
(Cn)n>o0 of circuits, with C, over a vari-
ables set of size n.

By convention, we usually refer to “circuit
families” simply by “circuits”.

Definition

Each circuit C, defines a language L(C,),

the set of words w such that 7 (w) = 1.
A circuit family C defines a language

L(C) = U, L(Ca)-

No connections required between the C,.

4/16

Formal definitions

Each circuit computes only a function of a
fixed set of variables
— cannot consider complexity

No connections required between the C,.

Definition (Families)

A circuit family is a collection C =
(Cn)n>o0 of circuits, with C, over a vari-
ables set of size n.

By convention, we usually refer to “circuit
families” simply by “circuits”.

Definition

Each circuit C, defines a language L(C,),

the set of words w such that 7 (w) = 1.
A circuit family C defines a language

L(C) = U, L(Ca)-

Example

Denote by Acc, the circuit with n inputs
that always accepts (one “1" gate and no
wires). Similarly, define Rej, that always
rejects.
Consider the family C:

e C, = Acc, if the n" TM (in some

order) always halts

e C, = Rej, otherwise
Then L(C) is undecidable but all circuits
are trivial.

4/16

Formal definitions

Each circuit computes only a function of a
fixed set of variables
— cannot consider complexity

No connections required between the C,.

Definition (Families)

A circuit family is a collection C =
(Cn)n>o0 of circuits, with C, over a vari-
ables set of size n.

By convention, we usually refer to “circuit
families” simply by “circuits”.

Definition

Each circuit C, defines a language L(C,),

the set of words w such that 7 (w) = 1.
A circuit family C defines a language

L(C) = U, L(Ca)-

Example

Denote by Acc, the circuit with n inputs
that always accepts (one “1" gate and no
wires). Similarly, define Rej, that always
rejects.
Consider the family C:

e C, = Acc, if the n" TM (in some

order) always halts

e C, = Rej, otherwise
Then L(C) is undecidable but all circuits
are trivial.

Can be avoided with uniformity: a procedure
to compute the n'" circuit in the family.

— Not here

— See the lectures on “Complexity Theory”

4/16

Links with Turing Machines

Machines with advice

Definition (advice)

A Turing machine with advice Misa TM
with two inputs x and y, and an advice
function a: N — {0, 1}*.

It accepts a word x if M accepts

(x; a([x]))-

5/16

Machines with advice

Definition (advice)

A Turing machine with advice Misa TM
with two inputs x and y, and an advice
function a: N — {0,1}*.

It accepts a word x if M accepts

(x; a([x]))-

Definition (P/poly)

The complexity class P/poly is the class
of languages accepted by a TM running
in polynomial time with a polynomial size
advice.

— A non-uniform version of P.

5/16

Machines with advice

Definition (advice)

A Turing machine with advice Misa TM
with two inputs x and y, and an advice
function a: N — {0,1}*.

It accepts a word x if M accepts

(x; a([x]))-

Definition (P/poly)

The complexity class P/poly is the class
of languages accepted by a TM running
in polynomial time with a polynomial size
advice.

— A non-uniform version of P.

Theorem
Lis in P/poly
=
L is computable by a poly-size circuit

5/16

Machines with advice

Definition (advice)

A Turing machine with advice Misa TM
with two inputs x and y, and an advice
function a: N — {0,1}*.

It accepts a word x if M accepts

(x; a([x]))-

Proof (<)
e Evaluating a poly-size circuit can be
done in poly time.
e The circuit is the advice.

Definition (P/poly)

The complexity class P/poly is the class
of languages accepted by a TM running
in polynomial time with a polynomial size
advice.

— A non-uniform version of P.

Theorem
Lis in P/poly
=
L is computable by a poly-size circuit

5/16

Machines with advice

Definition (advice)

A Turing machine with advice Misa TM
with two inputs x and y, and an advice
function a: N — {0,1}*.

It accepts a word x if M accepts

(x; a([x]))-

Definition (P/poly)

The complexity class P/poly is the class
of languages accepted by a TM running
in polynomial time with a polynomial size
advice.

Proof (<)
e Evaluating a poly-size circuit can be
done in poly time.
e The circuit is the advice.

For the converse, we admit the following for
the moment.

Lemma
There is a poly-size circuit for every lan-
guage in P.

— A non-uniform version of P.

Theorem
Lis in P/poly
=
L is computable by a poly-size circuit

5/16

Machines with advice

Definition (advice) Proof (<)
A Turing machine with advice Misa TM e Evaluating a poly-size circuit can be
with two inputs x and y, and an advice done in poly time.
function a: N — {0,1}*. e The circuit is the advice.
It accepts a word x if M accepts For the converse, we admit the following for
(x; a(|x[))- the moment.

Lemma

Drsifiafitiom ([jpeiy) There is a poly-size circuit for every lan-

The complexity class P/poly is the class guage in P.
of languages accepted by a TM running
in polynomial time with a polynomial size

advice. Proof (=)
— A non-uniform version of P. e Take M a P/poly TM.
e Construct D, the circuit for M with
Theorem inputs x and y of sizes n and |a(n)|,
Lis in P/poly by the lemma.
= e Take C, to be D, with the inputs in
L is computable by a poly-size circuit y replaced by a(n).

5/16

Lemma
There is a poly-size circuit for every language in P.

Proof

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

e The content of a cell ¢ at time /
only depends on the last time j;
the head was in ¢, which only
depends on .

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

e The content of a cell ¢ at time /
only depends on the last time j;
the head was in ¢, which only
depends on .

e \We can compute ¢;1; from c;,
the input and ¢;,.

— Constant size circuit.

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof

o Let M a 1-tape TM in time t(n).

Input

e Wlog. oblivious: the direction of

[]

[T TTTTI

[]

the head does not depend on the ’

Configuration ¢

input.
— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

e The content of a cell ¢ at time /
only depends on the last time j;
the head was in ¢, which only
depends on .

e \We can compute ¢;1; from c;,
the input and ¢;,.

— Constant size circuit.

6/16

Lemma

There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

e The content of a cell ¢ at time /
only depends on the last time j;
the head was in ¢, which only
depends on .

e \We can compute ¢;1; from c;,
the input and ¢;,.

— Constant size circuit.

Input

[T TTTTI

[]

Configuration ¢

[]

[T TTTTI

[]

Step 1

[]

[[T TTTTI

[]

Configuration ¢;

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

e The content of a cell ¢ at time /
only depends on the last time j;
the head was in ¢, which only
depends on .

e \We can compute ¢;1; from c;,
the input and ¢;,.

— Constant size circuit.

Input

[T TTTTI

[

[

Configuration ¢

[

[

[T TTTTI

[

[

Step 1

[

[

[[T TTTTI

[

[

Configuration ¢;

Configuration ¢;(n)—1

[

[

[T TTTTI

[

[

Step t(n)

[

[

[TTTTTTI

[

[

Configuration ¢;(,)

6/16

Lemma
There is a poly-size circuit for every language in P.

Proof
o Let M a 1-tape TM in time t(n).

e Wlog. oblivious: the direction of
the head does not depend on the
input.

— See simulation of a TM by a
1-tape TM.

e A configuration ¢; at time /
consists in the state of the TM
and the symbol read by all heads.
— ¢j constant size string.

e The content of a cell ¢ at time /
only depends on the last time j;
the head was in ¢, which only
depends on .

e \We can compute ¢;1; from c;,
the input and ¢;,.

— Constant size circuit.

Input

[]

[[T

[]

[

[

Configuration ¢

[]

[[T

[]

[

Step 1

[

[]

[[T

[]

[

[

Configuration ¢;

Configuration ¢;(n)—1

[

[]

[[T

[]

[

[

Step t(n)

[

[]

[T 11

[]

[

Configuration ¢;(,)

[

[]

[[T

[]

[

[

Output

6/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

Proof — counting

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

Lemma (Shannon)
Almost every Boolean function needs a circuit of exponential size to be computed.

Proof — counting
Number of Boolean functions with n

inputs: 22"

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

Lemma (Shannon)
Almost every Boolean function needs a circuit of exponential size to be computed.

Proof — counting
Number of Boolean functions with n Number of circuits with n inputs and

inputs: 22" size s: < ((n+5)2°)°.

— Each gate has a type among n+ 5
choices.

— Each gate has 2° choices for its
parents

— There are s gates.

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

Lemma (Shannon)
Almost every Boolean function needs a circuit of exponential size to be computed.

Proof — counting
Number of Boolean functions with n Number of circuits with n inputs and

inputs: 22" size s: < ((n+5)2°)°.

— Each gate has a type among n+ 5
choices.

— Each gate has 2° choices for its
parents

— There are s gates.

For s = ﬂn/n, the ratio 22" by 2slog(n+1)+5 tends to 1.

7/16

Solving hard problems?

Claim
Showing that any L € NP cannot be computed by a poly-size circuit would prove P £ NP.

— Circuits seems easier to work with than TMs.

Lemma (Shannon)
Almost every Boolean function needs a circuit of exponential size to be computed.

Proof — counting
Number of Boolean functions with n Number of circuits with n inputs and

inputs: 22" size s: < ((n+5)2°)°.

— Each gate has a type among n+ 5
choices.

— Each gate has 2° choices for its
parents

— There are s gates.

For s = ﬂn/n, the ratio 22" by 2slog(n+1)+5 tends to 1.

We still do not know any explicit such function!

7/16

Classes of small circuits
We need to restrict circuits to study them.

Gives a notion of efficiently parallelizable
languages.

8/16

Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC°)

The class AC° consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

8/16

Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC°)

The class AC° consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

— In particular, the fan-in is unbounded.
Otherwise, the output only depends in finitely
many inputs.

8/16

Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC°)

The class AC° consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

— In particular, the fan-in is unbounded.
Otherwise, the output only depends in finitely
many inputs.

Definition (NC')

The class NC! consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

8/16

Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC°)

The class AC° consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

— In particular, the fan-in is unbounded.
Otherwise, the output only depends in finitely
many inputs.

Definition (NC')

The class NC! consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

What if we restrict the number of

communications?
8/16

Classes of small circuits

We need to- restrict _circuits to stud}/ them. Definition (WLACO)
Gives a notion of efficiently parallelizable
languages. The class WLAC? consists of languages
recognizable by circuits of constant depth
Definition (ACO) with linearly many wires.

The class AC® consists of languages rec- — Extremely efficient parallel algorithms.

ognizable by circuits of polynomial size,
constant depth.

— In particular, the fan-in is unbounded.
Otherwise, the output only depends in finitely
many inputs.

Definition (NC')

The class NC! consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

What if we restrict the number of

communications?
8/16

Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC°)

The class AC° consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

Definition (WLAC)

The class WLAC? consists of languages
recognizable by circuits of constant depth
with linearly many wires.

— Extremely efficient parallel algorithms.

— In particular, the fan-in is unbounded.

Otherwise, the output only depends in finitely

many inputs.

Claim
WLAC® € AC® € NC!

Definition (NC')

The class NC! consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

What if we restrict the number of
communications?

8/16

Classes of small circuits

We need to restrict circuits to study them.
Gives a notion of efficiently parallelizable
languages.

Definition (AC°)

The class AC° consists of languages rec-
ognizable by circuits of polynomial size,
constant depth.

— In particular, the fan-in is unbounded.
Otherwise, the output only depends in finitely
many inputs.

Definition (WLAC)

The class WLAC? consists of languages
recognizable by circuits of constant depth
with linearly many wires.

— Extremely efficient parallel algorithms.

Claim
WLAC® € AC® € NC!

Definition (NC')

The class NC! consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

Proof
e We can remove the gates not linked
to any wire.
e a V gate of fan-in n can be trans-
formed into a binary tree of size 2n
and depth log(n).

What if we restrict the number of
communications?

8/16

Adding numbers

Adding two numbers

Problem (ADD)
e Given: Two n-bits numbers x and

y
e Output: A n—+ 1-bits number z =

X+y

9/16

Adding two numbers

Problem (ADD)
e Given: Two n-bits numbers x and

y
e Output: A n—+ 1-bits number z =

X+y

Not a language, but a function.
— Consider circuits with several outputs (one
for each bit of the answer)

9/16

Adding two numbers

Problem (ADD)
e Given: Two n-bits numbers x and

y
e Output: A n—+ 1-bits number z =

X+y

Not a language, but a function.

— Consider circuits with several outputs (one
for each bit of the answer)

— numbers are x = x, - -+ x1 from high
weights to low weigths

9/16

Adding two numbers

Problem (ADD)
e Given: Two n-bits numbers x and

y
e Output: A n—+ 1-bits number z =

X+y

Not a language, but a function.

— Consider circuits with several outputs (one
for each bit of the answer)

— numbers are x = x, - -+ x1 from high
weights to low weigths

Example (A circuit for ADD)
¢ Notation: @ denotes XOR
e Idea: Computes the successive car-
ries:
® q=Xx0A\Yo
o ¢ = (x,-/\y,-)\/((x,-\/y,-)/\c,-_l)

9/16

Adding two numbers

Problem (ADD)
e Given: Two n-bits numbers x and

y
e Output: A n—+ 1-bits number z =

X+y

Not a language, but a function.

— Consider circuits with several outputs (one
for each bit of the answer)

— numbers are x = x, - -+ x1 from high
weights to low weigths

Example (A circuit for ADD)

e Notation: @ denotes XOR
e Idea: Computes the successive car-
ries:

® Co=xp N\ Yo

o ¢ = (x,-/\y,-)\/((x,-\/y,-)/\c,-_l)
e The outputs are then:

® 20 =Xx0D Yo

¢ Zi=XDyi D1

® Zny1 = Cp

9/16

Adding two numbers

Problem (ADD) Example (A circuit for ADD)
e Given: Two n-bits numbers x and e Notation: @ denotes XOR
y e Idea: Computes the successive car-
e Output: A n—+ 1-bits number z = ries:
X+y ® o = X0\ Yo
- o ¢ = (x,-/\y,-)\/((x,-\/y,-)/\c,-_l)
Not a language, but a function. e The outputs are then:
— Consider circuits with several outputs (one e 2= x0 D Yo
for each bit of the answer) ¢ Z=x DYy DCci1
— numbers are x = x,, - - - x; from high ® Zyi1=¢Cp

weights to low weigths - -
— linear size

— linear depth

9/16

Adding two numbers

Problem (ADD) Example (A circuit for ADD)
e Given: Two n-bits numbers x and e Notation: @ denotes XOR
y e Idea: Computes the successive car-
e Output: A n—+ 1-bits number z = ries:
X+y ® o = X0\ Yo
- o ¢ = (x,-/\y,-)\/((x,-\/y,-)/\c,-_l)
Not a language, but a function. e The outputs are then:
— Consider circuits with several outputs (one e 2= x0 D Yo
for each bit of the answer) ¢ Z=x DYy DCci1
— numbers are x = x,, - - - x; from high ® Zyi1=¢Cp

weights to low weigths - -
— linear size

— linear depth

This is roughly the sequential algorithm.
— We can do better in parallel!

9/16

A better circuit for ADD

Lemma
ADDe AC°

10/16

A better circuit for ADD

Lemma
ADDe AC°

Proof
e lIdea: Still computes the carries.
The carry ¢; is 1 iff
e a carry is created at a position j </, i.e. x; A yj, and
e the carry is not lost between i and j, i.e. /\;:J.H(x, Vo).

10/16

A better circuit for ADD

Lemma
ADDe AC°

Proof
e lIdea: Still computes the carries.
The carry ¢; is 1 iff
e a carry is created at a position j </, i.e. x; A yj, and
e the carry is not lost between i and j, i.e. /\;:J.H(x, Vo).
e Thus:

i = Vizo((5 A Y) A Nicji1(a Vi)

10/16

A better circuit for ADD

Lemma
ADDe AC°

Proof
e lIdea: Still computes the carries.
The carry ¢; is 1 iff
e a carry is created at a position j </, i.e. x; A yj, and
o the carry is not lost between j and j, i.e. A;:j+1(x, V).
e Thus:
i = Vijzo((5 A Yi) A Nizjrar (0 V 1)

e As before: zp =x9 B yp, Z =X D y; D ¢ and 2,411 = ¢,

10/16

A better circuit for ADD

Lemma
ADDe AC°

Proof
e lIdea: Still computes the carries.
The carry ¢; is 1 iff
e a carry is created at a position j </, i.e. x; A yj, and
o the carry is not lost between j and j, i.e. A;:j+1(x, V).
e Thus:
i = Vijzo((5 A Yi) A Nizjrar (0 V 1)

e As before: zp =x9 B yp, Z =X D y; D ¢ and 2,411 = ¢,

— Quadratic size (by factorizing the (x; A y;) and (x; V y;))
— Constant depth

10/16

A better circuit for ADD

Lemma
ADDe AC°

Proof

LN Ot

Zy Z4 zZ3 V) 21

10/16

Adding many numbers

What if we want to add several numbers in
parallel?

11/16

Adding many numbers

What if we want to add several numbers in
parallel?

Problem ADD"
e Given: n many n-bits numbers
X1y..-Xn
e Output: A n + log(n)-bits number
Z=x1+ -+ X,

Problem ADD'"&(")
e Given: log(n) many n-bits numbers

X1, -+ - Xlog(n)
o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

11/16

Adding many numbers

What if we want to add several numbers in
parallel?

Problem ADD"
e Given: n many n-bits numbers
X1y..-Xn
e Output: A n + log(n)-bits number
Z=x1+ -+ X,

Problem ADD'"&(")
e Given: log(n) many n-bits numbers

X1, -+ - Xlog(n)
o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

What are their respective complexities?

11/16

Adding many numbers

What if we want to add several numbers in
parallel? Claim
ADD"e NC*

Problem ADD"
e Given: n many n-bits numbers
X1y..-Xn
e Output: A n + log(n)-bits number
Z=x1+ -+ X,

Problem ADD'"&(")
e Given: log(n) many n-bits numbers

X1, -+ - Xlog(n)
o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

What are their respective complexities?

11/16

Adding many numbers

What if we want to add several numbers in
parallel? Claim
ADD"e NC*

Problem ADD"

e Given: n many n-bits numbers
X1, .. Xn Proof

e Output: A n+ log(n)-bits number A binary tree of AC° circuits for ADD.
Z=X1+ "+ Xp

Problem ADD'"&(")
e Given: log(n) many n-bits numbers

X1, -+ - Xlog(n)
o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

What are their respective complexities?

11/16

Adding many numbers

What if we want to add several numbers in
parallel? Claim

ADD"e NC!

Problem ADD"
e Given: n many n-bits numbers

X1, - Xn Proof
e Output: A n+ log(n)-bits number A binary tree of AC° circuits for ADD.
Z=X1+ "+ Xp
Lemma
Problem ADD"&(" ADD"&(W e AC°
e Given: log(n) many n-bits numbers A binary tree only gives depth log log(n)
X1; - - - Xiog(n) — next slide

o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

What are their respective complexities?

11/16

Adding many numbers

What if we want to add several numbers in
parallel? Claim

ADD"e NC!

Problem ADD"
e Given: n many n-bits numbers

X1, - Xn Proof

e Output: A n+ log(n)-bits number A binary tree of AC° circuits for ADD.
Z=X1+ "+ Xp

Lemma
Problem ADD"&(" ADD"&(W e AC°

e Given: log(n) many n-bits numbers A binary tree only gives depth log log(n)
X1; - - - Xiog(n) — next slide

e Output: A n—+loglog(n)-bits num-
berz=x; +---+ Xiog(n) Theorem

. : iy ADD"¢ AC°
What are their respective complexities?

— next lecture

11/16

Adding many numbers

What if we want to add several numbers in
parallel?

Problem ADD"
e Given: n many n-bits numbers
X1y..-Xn
e Output: A n + log(n)-bits number
Z=x1+ -+ X,

Problem ADD'"&(")
e Given: log(n) many n-bits numbers

X1, -+ - Xlog(n)
o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

What are their respective complexities?

Claim
ADD"e NC!

Proof
A binary tree of AC? circuits for ADD.

Lemma
ADD'&(" ¢ AC?

A binary tree only gives depth log log(n)
— next slide

Theorem

ADD"¢ AC°

— next lecture

The case of WLAC? will be the topic of the
rest of this lecture.

11/16

Adding log(n) numbers

Lemma
ADD'&(" ¢ ACC

Adding log(n) numbers

Lemma
ADD'&(" ¢ ACC

Intuition
e Adding the following numbers. ..

xx=11001011
xx=00011001
x3=11100111

Adding log(n) numbers

Lemma
ADD'&(" ¢ ACC

Intuition
e Adding the following numbers. ..

X1:1 10
x2=000
X3:1 11

01011

11001

00111
54:10

Adding log(n) numbers

Lemma
ADD'&(" ¢ ACC

Intuition
e Adding the following numbers. ..

X1 = 110
xx=000
X3 = 111
e ...reduces to adding the numbers:
yi= 110
y= 00

LY oro

[)

[T

Il o+~ R

011
001
111
10
011
0101
S4

12/16

Adding log(n) numbers

Lemma
ADD'&(" ¢ ACC

Intuition
e Adding the following numbers. ..

X1 = 110
xx=000
X3 = 111
e ...reduces to adding the numbers:
yi= 110
y= 00

LY oro

[)

[T

Il o+~ R

011
001
111
10
0110
0101
S4

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof

e Forl1 <j<n,
s = SO0E jth pit of x;
— loglog(n) bits numbers.

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e Forl1<j<n,
s = S8 jth it of x;
— log log(n) bits numbers.

e For 1 </ <loglog(n), let y; be
the concatenation of the /" bits
of the s;, with / — 1 zeroes in the
end.

— the earlier diagonal form
— n + loglog(n) bits numbers

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e Forl1<j<n,
s = S8 jth it of x;
— log log(n) bits numbers.

e For 1 </ <loglog(n), let y; be
the concatenation of the /" bits
of the s;, with / — 1 zeroes in the
end.

— the earlier diagonal form
— n + loglog(n) bits numbers

o Clearly: Y. xi=>",y

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e Forl1<j<n,
s = S8 jth it of x;
— log log(n) bits numbers.

e For 1 </ <loglog(n), let y; be
the concatenation of the /" bits
of the s;, with / — 1 zeroes in the
end.

— the earlier diagonal form
— n + loglog(n) bits numbers

o Clearly: Y. xi=>",y

e All s; and y; depends on only
log(n) bits of the input
— they can be computed in AC°
by “brute force”

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof

For1<j<n,

s = S8 jth it of x;

— log log(n) bits numbers.

For 1 </ < loglog(n), let y; be
the concatenation of the /" bits
of the s;, with / — 1 zeroes in the
end.

— the earlier diagonal form

— n + loglog(n) bits numbers

o Clearly: Y. xi=>",y

e All s; and y; depends on only
log(n) bits of the input

— they can be computed in AC°
by “brute force”

e New goal: Add loglog(n) many
(n+ loglog(n)) bits numbers

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e For1<j<n, e New goal: Add loglog(n) many

Sj = El,'(fl(n)jth bit of Xx; (n + log log(n)) bits numbers

— loglog(n) bits numbers. e New new goal: Add log loglog(n) many
e For 1 </ <loglog(n), let y, be (n + log log(n) + log log log(n)) bits

the concatenation of the /th bits N e

of the s;, with / — 1 zeroes in the

end.

— the earlier diagonal form
— n + loglog(n) bits numbers

o Clearly: Y. xi=>",y

e All s; and y; depends on only
log(n) bits of the input
— they can be computed in AC°
by “brute force”

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e For1<;<n, e New goal: Add loglog(n) many

sj = El,fl(n)jth bit of x; (n+ log log(n)) bits numbers

— loglog(n) bits numbers. e New new goal: Add loglog log(n) many
e For 1</ <loglog(n), let y, be (n + log log(n) + log log log(n)) bits

the concatenation of the /" bits numbers

of the s;, with / — 1 zeroes in the

end. e Last goal: Add two

— the earlier diagonal form n + loglog(n) + - - - + log*(n) bits number

— n+ loglog(n) bits numbers where k = smallest integer such that the
o Clearly: Y. xi=>",y k-fold application of log on nis < 2.
e All s; and y; depends on only

log(n) bits of the input

— they can be computed in AC°

by “brute force”

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e For1<;<n, e New goal: Add loglog(n) many

sj = El,fl(n)jth bit of x; (n+ log log(n)) bits numbers

— loglog(n) bits numbers. e New new goal: Add loglog log(n) many
e For 1</ <loglog(n), let y, be (n + log log(n) + log log log(n)) bits

the concatenation of the /" bits numbers

of the s;, with / — 1 zeroes in the

end. e Last goal: Add two

— the earlier diagonal form n + loglog(n) + - - - + log*(n) bits number

— n+ loglog(n) bits numbers where k = smallest integer such that the
o Clearly: Y. xi=>",y k-fold application of log on nis < 2.
e All s; and y; depends on only e Small computation, for n big:

log(n) bits of the input log log(n) + - - - + log"(n) < log(n)

— they can be computed in AC°

by “brute force”

12/16

Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e Forl1<j<n,
s = S8 jth it of x;
— log log(n) bits numbers.

e For 1 </ <loglog(n), let y; be
the concatenation of the /" bits
of the s;, with / — 1 zeroes in the
end.

— the earlier diagonal form
— n + loglog(n) bits numbers

o Clearly: Y. xi=>",y

e All s; and y; depends on only
log(n) bits of the input
— they can be computed in AC°
by “brute force”

New goal: Add loglog(n) many

(n+ loglog(n)) bits numbers

New new goal: Add logloglog(n) many
(n + loglog(n) + log log log(n)) bits
numbers

e Last goal: Add two

n + loglog(n) + - - - + log*(n) bits number
where k = smallest integer such that the
k-fold application of log on nis < 2.
Small computation, for n big:

log log(n) + - - - + log"(n) < log(n)

We just have to add two n + log(n)
numbers, that can be computed in AC°
(depends on log(n) bits of the y;)

12/16

The power of WLACY

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

Xy xi b o {yis LYk

13/16

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

{Xi17"'7Xik} to {-yjl""’-yjk}'

Example

X1 X2 X3 X4

Y1 Y2 y3 Ya

13/16

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

{Xi17"'7Xik} to {-yjl""’-yjk}'

Let G be a DAG with ninputs xi, ..., x, and n outputs y, . ..
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

, Yn. It is a superconcentrator

Example

X1 X2 X3 X4

N

™~

Y1 Y2 3 Ya

13/16

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

{Xi17"'7Xik} to {-yjl""’-yjk}'

Example

X1 X2 X3 X4

N

Y1 Y2 ¥3 Ya

13/16

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

{Xi17"'7Xik} to {-yjl""’-yjk}'

Example

X1 X2 X3 X4

N

Y1 Y2 ¥3 Ya

13/16

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

{Xi17"'7Xik} to {-yjl""’-yjk}'

Example Counter-example

X1 X2 X3 X4 X1 X2 X3 X4

N

Y1 Y2 ¥3 Ya Y1 Y2 3 Ya

13/16

Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from

{Xi17"'7Xik} to {-yjl""’-yjk}'

Example Counter-example

X1 X2 X3 X4 X1 X2 X3 X4

N

i

n Y2 y3 Ya Y1 Y2 ¥3 Ya

13/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

— it has logarithmic depth.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

— it has logarithmic depth.

To tackle WLACO, we have more structure.

Theorem (Dolev, Dwork, Pippinger,
Widgerson)

There are no superconcentrator with
constant-depth and linearly many edges.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

— it has logarithmic depth.

To tackle WLACO, we have more structure.

Theorem (Dolev, Dwork, Pippinger,
Widgerson)

There are no superconcentrator with
constant-depth and linearly many edges.

To have a lower bound against WLACO, we
only need to prove that certain circuits have
to be superconcentrators.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges. But:

Lemma (Valiant, Pippinger)
There is a superconcentrator with linearly
many edges.

— it has logarithmic depth.

To tackle WLACO, we have more structure.

Theorem (Dolev, Dwork, Pippinger,
Widgerson)

There are no superconcentrator with
constant-depth and linearly many edges.

To have a lower bound against WLACO, we
only need to prove that certain circuits have
to be superconcentrators.

We have tools for that.

Definition (Cut)

Let X and Y be two sets of vertices in a
graph. A cut between X and Y is a set
of vertices whose removal disconnect X
and Y.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint We have tools for that.
paths, there must be many edges. But:

Definition (Cut)

Lemma (Valiant, Pippinger) Let X and Y be two sets of vertices in a

There is a superconcentrator with linearly graph. A cut between X and Y is a set

many edges. of vertices whose removal disconnect X
and Y.

— it has logarithmic depth.

To tackle WLAC?, we have more structure. Theorem (Menger)

Theorem (Dolev, Dwork, Pippinger, For any two disjoints X and Y, the min-
Widgerson) imum size of a cut between X and Y is

also the maximum number of vertex dis-
joint paths between X and Y.

There are no superconcentrator with
constant-depth and linearly many edges.

To have a lower bound against WLACO, we
only need to prove that certain circuits have
to be superconcentrators.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint We have tools for that.
paths, there must be many edges. But:

Definition (Cut)

Lemma (Valiant, Pippinger) Let X and Y be two sets of vertices in a

There is a superconcentrator with linearly graph. A cut between X and Y is a set

many edges. of vertices whose removal disconnect X
and Y.

— it has logarithmic depth.

To tackle WLAC?, we have more structure. Theorem (Menger)

Theorem (Dolev, Dwork, Pippinger, For any two disjoints X and Y, the min-
Widgerson) imum size of a cut between X and Y is

also the maximum number of vertex dis-
joint paths between X and Y.

There are no superconcentrator with
constant-depth and linearly many edges.

— Can be seen as a special case of the

- 0
To have a lower bound against WLAC", we max-flow min-cut theorem.

only need to prove that certain circuits have
to be superconcentrators.

14/16

Efficient superconcentrators

Intuition: to have many vertex disjoint
paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

— it has logarithmic depth.

To tackle WLACO, we have more structure.

Theorem (Dolev, Dwork, Pippinger,
Widgerson)

There are no superconcentrator with
constant-depth and linearly many edges.

To have a lower bound against WLACO, we
only need to prove that certain circuits have
to be superconcentrators.

We have tools for that.

Definition (Cut)
Let X and Y be two sets of vertices in a
graph. A cut between X and Y is a set

of vertices whose removal disconnect X
and Y.

Theorem (Menger)

For any two disjoints X and Y, the min-
imum size of a cut between X and Y is
also the maximum number of vertex dis-
joint paths between X and Y.

— Can be seen as a special case of the
max-flow min-cut theorem.

— To show that there are many vertex
disjoint paths, we must show that there are
no small cuts.

14/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®

Proof

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®

Proof o)
o Let C be a circuit for ADD with n

inputs.

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®

Proof o)
o Let C be a circuit for ADD with n

inputs.

e G is the graph with inputs x; and y;
merged.
— we want to show that it is a
superconcentrator.

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®

Proof o)
o Let C be a circuit for ADD with n

inputs.

e G is the graph with inputs x; and y;
merged.
— we want to show that it is a
superconcentrator.

o Llet i < ji <--- <k < Jk.
— sets [and J.

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®

Proof o)
o Let C be a circuit for ADD with n

inputs.
e G is the graph with inputs x; and y;
merged.
— we want to show that it is a
superconcentrator.
o Llet i < ji <--- <k < Jk.
— sets [and J.
e (C'is C with:
e x; set to 1 and y; set to O for
i¢l
e x; and y; merged for i € /
— for i € I, x; and y; must be set to
the same value.
— k vertex disjoint paths in C’ gives
the same in G.

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®
Proof o)
° !_et C be a circuit for ADD with n e Claim: the output z; is 0 if x; and y;
mpyts. L are both 1.
e G is the graph with inputs x; and y; the output z is 1 if x; and y; are
meieed both 0.
— we want to show that it is a . if x; = y;, what is on the right
superconcentrator. does not matter.

o Llet i < ji <--- <k < Jk.
— sets | and J.
e (C’is C with:
e x; set to 1 and y; set to O for
i¢l
e x; and y; merged for i € /
— for i € I, x; and y; must be set to
the same value.
— k vertex disjoint paths in C’ gives
the same in G.

— a carry is created and propagated
if and only if both are 1.

15/16

Ba

k to ADD
Theorem
ADD ¢ WLAC®
Proof o)
° !_et C be a circuit for ADD with n e Claim: the output z; is 0 if x; and y;
mpyts. L are both 1.
e G is the graph with inputs x; and y; the output z is 1 if x; and y; are
meieed both 0.
— we want to show that it is a . if x; = y;, what is on the right
superconcentrator. does not matter.

o Llet i < ji <--- <k < Jk.
— sets | and J.
e (C’is C with:
e x; set to 1 and y; set to O for
i¢l
e x; and y; merged for i € /
— for i € I, x; and y; must be set to
the same value.
— k vertex disjoint paths in C’ gives
the same in G.

— a carry is created and propagated
if and only if both are 1.

Thus there are 2% possible outcomes
for then outputs in J, depending on
the inputs in /.

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®
Proof o)
° !_et C be a circuit for ADD with n e Claim: the output z; is 0 if x; and y;
mpyts. L are both 1.
e G is the graph with inputs x; and y; the output z is 1 if x; and y; are
meieed both 0.
— we want to show that it is a . if x; = y;, what is on the right
superconcentrator. does not matter.

o Llet i < ji <--- <k < Jk.
— sets | and J.
e (C’is C with:
e x; set to 1 and y; set to O for
i¢l
e x; and y; merged for i € /
— for i € I, x; and y; must be set to
the same value.
— k vertex disjoint paths in C’ gives
the same in G.

— a carry is created and propagated
if and only if both are 1.

Thus there are 2% possible outcomes
for then outputs in J, depending on

the inputs in /.

If there were a cut of size < k, there
would be < 2 possible outcomes.

15/16

Ba

k to ADD

Theorem
ADD ¢ WLAC®
Proof o)
° !_et C be a circuit for ADD with n Claim: the output z; is 0 if x; and y;
mpyts. L are both 1.
e G is the graph with inputs x; and y; the output z is 1 if x; and y; are
meieed both 0.
— we want to show that it is a . if x; = y;, what is on the right
superconcentrator. does not matter.

o Llet i < ji <--- <k < Jk.
— sets | and J.
e (C’is C with:
e x; set to 1 and y; set to O for
i¢l
e x; and y; merged for i € /
— for i € I, x; and y; must be set to
the same value.
— k vertex disjoint paths in C’ gives
the same in G.

— a carry is created and propagated
if and only if both are 1.

Thus there are 2% possible outcomes
for then outputs in J, depending on
the inputs in /.

If there were a cut of size < k, there
would be < 2 possible outcomes.
We conclude by Menger's theorem.

15/16

Recap

We have seen today:

WLACY | ACY [NC

ADD X /| 7
ADD'°&(") X | v
ADD" X X | v

16/16

Recap

We have seen today:

Whether ADD can be done in constant depth with linearly many nodes is a major open

problem.

WLACY | ACY [NC

ADD X /| 7
ADD'°&(") X | v
ADD" X X | v

16/16

Limitations of constant-depth circuits

Corentin Barloy Michael Walter Thomas Zeume

RUHR
UNIVERSITAT
BOCHUM

Introduction

Recall: AC? is the class of languages
computable but constant depth and
polynomial size circuits.

1/16

Introduction

Recall: AC? is the class of languages
computable but constant depth and
polynomial size circuits.

We showed that it is rather powerful:

Lemma
ADD'"&(M ¢ AC?

1/16

Introduction

Recall: AC? is the class of languages
computable but constant depth and
polynomial size circuits.

We showed that it is rather powerful:

Lemma
ADD'"&(M ¢ AC?

We now want to show lower bounds, i.e.
inexpressibility results.
The goal today:

Theorem
ADD"¢ AC®

1/16

Introduction

Recall: AC? is the class of languages
computable but constant depth and
polynomial size circuits.

We showed that it is rather powerful:

Lemma
ADD'"&(M ¢ AC?

We now want to show lower bounds, i.e.
inexpressibility results.
The goal today:

Theorem
ADD"¢ AC®
— Not so easy!

1/16

Introduction

Recall: AC? is the class of languages Simplification: Go back to languages.
computable but constant depth and — Only look at the last bit of the output.

polynomial size circuits.

We showed that it is rather powerful:

Lemma
ADD'"&(M ¢ AC?

We now want to show lower bounds, i.e.
inexpressibility results.
The goal today:

Theorem
ADD"¢ AC®
— Not so easy!

1/16

Introduction

Recall: AC? is the class of languages Simplification: Go back to languages.
Computab|e but constant depth and — Only look at the last bit Of the OUtpUt.
polynomial size circuits. 1 1 1 1
X Xy X3 o X,
We showed that it is rather powerful: +x¢ X G - X2
Lemma :
ADDIog(n)e ACO + Xln X; X?:7 X,q
. yioy2 ys3 - Y
We now want to show lower bounds, i.e. !
— ¥, only depends on the number of 1

inexpressibility results.
The goal today:

among x}, ..., x".

Theorem
ADD"¢ AC®
— Not so easy!

1/16

Introduction

Recall: AC? is the class of languages
computable but constant depth and
polynomial size circuits.

We showed that it is rather powerful:

Lemma
ADD'"&(M ¢ AC?

We now want to show lower bounds, i.e.

inexpressibility results.
The goal today:

Theorem
ADD"¢ AC®

— Not so easy!

Simplification: Go back to languages.
— Only look at the last bit of the output.

1 1 1 1
LI T
+XxT X5 X3 - X,
+x1 x5 X Xp
yYi Y2 y3 - Yn

— ¥, only depends on the number of 1

among x}, ..., x".

Problem (Parity)

e Given: n bits xq,...,x,
e Output: The parity of the number
of 1 in the inputs: >, x; mod 2.

1/16

Introduction

Recall: AC? is the class of languages
computable but constant depth and
polynomial size circuits.

We showed that it is rather powerful:

Simplification: Go back to languages.
— Only look at the last bit of the output.

Lemma
ADD'"&(M ¢ AC?

We now want to show lower bounds, i.e.

inexpressibility results.
The goal today:

)k o A
+ X12 X22 x% s xﬁ
n n n n
X1 x5 X3 Xn
Yi Y2 y3 0 Yo
— ¥, only depends on the number of 1

among x}, ..., x".

Theorem
ADD"¢ AC®

Problem (Parity)

e Given: n bits xq,...,x,

— Not so easy!

e Output: The parity of the number
of 1 in the inputs: >, x; mod 2.

Theorem (New goal)

Parity ¢ AC°

1/16

The Parity language

Complexity of regular languages
Parity = (0*10*10*)* is regular.

2/16

Complexity of regular languages

Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

2/16

Complexity of regular languages

Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.

2/16

Complexity of regular languages

Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, ¢,, is the extended
transition function.

2/16

Complexity of regular languages
Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.

e For w a word, ¢,, is the extended
transition function.

e Finitely many functions @ — Q
— can be represented by strings of
constant length.

2/16

Complexity of regular languages
Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, ¢,, is the extended
transition function.
e Finitely many functions @ — Q
— can be represented by strings of
constant length.
e We have constant size circuits for:
e computing d, from a bit x,
e function composition 47 o 9>,
e whether a function maps i to a
state in F.

2/16

Complexity of regular languages

Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, ¢,, is the extended
transition function.
e Finitely many functions @ — Q
— can be represented by strings of
constant length.
e We have constant size circuits for:
e computing d, from a bit x,
e function composition 47 o 9>,
e whether a function maps i to a
state in F.

W)

w3

Complexity of regular languages
Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, d,, is the extended O Sy Sy
transition function.
e Finitely many functions @ — Q
— can be represented by strings of
constant length.
e We have constant size circuits for:
e computing d, from a bit x,
e function composition 47 o 9>,
e whether a function maps i to a
state in F.

Complexity of regular languages

Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, ¢,, is the extended
transition function.
e Finitely many functions @ — Q
— can be represented by strings of
constant length.
e We have constant size circuits for:
e computing d, from a bit x,
e function composition 47 o 9>,
e whether a function maps i to a
state in F.

Complexity of regular languages
Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

wWhp Wp w3 Wy

e For w a word, d,, is the extended O Sy Sy Sy
transition function.
e Finitely many functions @ — Q Oy Owswy
— can be represented by strings of V
\ 6W /

constant length.
e We have constant size circuits for:
e computing d, from a bit x,
e function composition 47 o 9>,
e whether a function maps i to a
state in F.

o Let A=(Q,4,i,F) be an automaton.

Complexity of regular languages
Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, ¢,, is the extended
transition function.
e Finitely many functions @ — Q
— can be represented by strings of
constant length.
e We have constant size circuits for:
e computing d, from a bit x,
e function composition 47 o 9>,
e whether a function maps i to a
state in F.

2/16

Complexity of regular languages
Parity = (0*10*10%)* is regular. This already gives an upper bound.

Theorem
All regular languages are in NC.

Proof

o Let A=(Q,4,i,F) be an automaton.
e For w a word, ¢,, is the extended
transition function.
e Finitely many functions @ — Q
— can be represented by strings of
constant length.
e We have constant size circuits for:
e computing d, from a bit x,

e function composition d; o dz, A binary tree of constant size circuits:
e whether a function maps / to a logarithmic depth and linear size
state in F.

2/16

A first easy lower bound

Definition (DNF)

A literal is a variable or its negation. A
term is a conjunction of literals. A DNF
is a disjunction of clauses.

3/16

A first easy lower bound

Definition (DNF)

A literal is a variable or its negation. A
term is a conjunction of literals. A DNF
is a disjunction of clauses.

— depth-3 AC° circuits.
— Useful is practice.

3/16

A first easy lower bound

Definition (DNF)

A literal is a variable or its negation. A
term is a conjunction of literals. A DNF
is a disjunction of clauses.

Claim
Any DNF for Parity must have at least
27! terms.

— depth-3 AC° circuits.
— Useful is practice.

3/16

A first easy lower bound

Definition (DNF)

A literal is a variable or its negation. A
term is a conjunction of literals. A DNF
is a disjunction of clauses.

Claim
Any DNF for Parity must have at least
27! terms.

— depth-3 AC° circuits.
— Useful is practice.

Optimal with \/WeParity T(w)
Xi If w; = 1

— T(w) is the term with “x ifwi=0

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A A“_yl DNF for Parity must have at least
term is a conjunction of literals. A DNF 2" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with Xi if wi =1
-x; ifw,=0

— Useful is practice.

Proof

e D= \/fv=1 T; a DNF for Parity.

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A A“_yl DNF for Parity must have at least
term is a conjunction of literals. A DNF 2" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with Xi if wi =1
-x; ifw,=0

— Useful is practice.

Proof

e D= \/fv=1 T; a DNF for Parity.
e We remove all terms with a
contradiction x; A —x;.

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A A“yl DNF for Parity must have at least
term is a conjunction of literals. A DNF 2" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with Xi if wi =1
-x; ifw,=0

— Useful is practice.

Proof

e D= \/fv=1 T; a DNF for Parity.

e We remove all terms with a
contradiction x; A —x;.

e Assume one T; has < n literals.
—+ variable x; does not appear in T;.

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A Any DNF for Parity must have at least
term is a conjunction of literals. A DNF 27" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with X dfwi =1

— Useful is practice. —x; ifw;=0

Proof

D =\/Y, T a DNF for Parity.
e We remove all terms with a
contradiction x; A —x;.
e Assume one T; has < n literals.
—+ variable x; does not appear in T;.
e Take w accepted by T;:
— w with x; flipped accepted by T;.
— it has different parity.

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A Any DNF for Parity must have at least
term is a conjunction of literals. A DNF 27" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with X dfwi =1

— Useful is practice. —x; ifw;=0

Proof
o D— Vszl T: a DNF for Parity. e Every T; .has n literals:
o We remove all terms with a — all variables appear.

contradiction x; A —x;.
e Assume one T; has < n literals.
—+ variable x; does not appear in T;.
e Take w accepted by T;:
— w with x; flipped accepted by T;.
— it has different parity.

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A Any DNF for Parity must have at least
term is a conjunction of literals. A DNF 27" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with X dfwi =1

— Useful is practice. —x; ifw;=0

Proof
o D— Vszl T: a DNF for Parity. e Every T; has n literals:
e We remove all terms with a — all variables appear.
contradiction x; A —x;. e T; accepts only one word.

e Assume one T; has < n literals.
—+ variable x; does not appear in T;.
e Take w accepted by T;:
— w with x; flipped accepted by T;.
— it has different parity.

3/16

A first easy lower bound

Definition (DNF)
A literal is a variable or its negation. A

term is a conjunction of literals. A DNF
is a disjunction of clauses.

Claim
Any DNF for Parity must have at least
27! terms.

— depth-3 AC° circuits.
— Useful is practice.

Optimal with \/WeParity T(w)

— T(w) is the term with X ifwi=1

X if w; = 0

Proof

D =\/Y, T a DNF for Parity.

e We remove all terms with a
contradiction x; A —x;.

e Assume one T; has < n literals.

e Take w accepted by T;:

— it has different parity.

—+ variable x; does not appear in T;.

— w with x; flipped accepted by T;.

e Every T; has n literals:
— all variables appear.
e T; accepts only one word.
e Thus D accepts at most N words.

3/16

A first easy lower bound

Definition (DNF) Claim
A literal is a variable or its negation. A Any DNF for Parity must have at least
term is a conjunction of literals. A DNF 27" terms.
is a disjunction of clauses. Optimal with \/,, cpayir, T(w)
— depth-3 AC? circuits. — T(w) is the term with X dfwi =1

— Useful is practice. —x; ifw;=0

Proof

o D— Vszl T: a DNF for Parity. e Every T; has n literals:

e We remove all terms with a — all variables appear.
contradiction x; A —x;. e T; accepts only one word.

e Assume one T; has < n literals. e Thus D accepts at most N words.
— variable x; does not appear in T;. o There are 2"~ words in Parity.

e Take w accepted by T;: - N>2m1
— w with x; flipped accepted by T;.
— it has different parity.

3/16

A first easy lower bound

Definition (DNF)
A literal is a variable or its negation. A

term is a conjunction of literals. A DNF
is a disjunction of clauses.

Claim
Any DNF for Parity must have at least

27— terms.

— depth-3 AC° circuits.
— Useful is practice.

Optimal with \/WeParity T(w)

— T(w) is the term with X ifwi=1

X if w; = 0

Proof

D =\/Y, T a DNF for Parity.

e We remove all terms with a
contradiction x; A —x;.

e Assume one T; has < n literals.

e Take w accepted by T;:

— it has different parity.

—+ variable x; does not appear in T;.

— w with x; flipped accepted by T;.

e Every T; has n literals:
— all variables appear.
e T; accepts only one word.
e Thus D accepts at most N words.
o There are 2"~ words in Parity.
- N >2"1

Both bounds works for CNF.

3/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

Xl X2 Xn_]_ Xn

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

Vi Vi
/—/\ﬁ /—/\ﬁ

Xl X2 Xn_]_ Xn

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

Vi Vi

/—‘/\ﬁ /—/\ﬁ
Xl X2 Xn_]_ Xn
DNF DNF DNF

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

Vi Vi
/—/\ﬁ /—/Kﬁ

Xl X2 Xn_]_ Xn

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

Vi Vi
/—/\ﬁ /—/Kﬁ

Xl X2 Xn_]_ Xn

e So far: depth 6.

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.
Vvn Vvn
e T T e
Xl X2 Xn_]_ Xn

IDNF| [CNF| |DNF| [CNF| |DNF| |CNF]|

— =

DNF’

-

e So far: depth 6.
e DNF’ has no negations.

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.
Vvn Vvn
e T T e
Xl X2 Xn_]_ Xn

/

CNF| [CNF| |CNF| [CNF| [CNF| [CNF]

DNF’

e So far: depth 6.
e DNF’ has no negations.
e Use De Morgan's laws.

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

e So far: depth 6. e Collapse the two layers of A.
e DNF’ has no negations. — depth 4
e Use De Morgan's laws.

4/16

An acceleration

If more depth is available, this can be improved.

Lemma (Hastad)
There is a depth-4 AC® circuit with O(1/n2V") gates for Parity.

Proof
Idea: Compute Parity of small blocks, then compute Parity of the parities.

e So far: depth 6. e Collapse the two layers of A.
e DNF’ has no negations. — depth 4
e Use De Morgan's laws. e 2,/n+ 1 circuits of size 271,

— size O(y/m2V")

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof
By induction.

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof
By induction.
1 1
nk—2 nk—2
/—/\—\ /_—/\—\
X1 X2 e : Xp—1 Xn

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof
By induction.
1 1
nk—2 nk—2
/_—/;\ /_—/\—\
X1 X2 Xn—1 Xn

IDNF| |[CNF| |DNF| |[CNF| |[DNF| |CNF]

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof
By induction.
1 1
nk—2 nk—2
/_—/;\ /_—/\—\
X1 X2 Xn—1 Xn

IDNF| |CNF| |DNF| |[CNF| |[DNF| |CNF]

— l —

Cr—1

o (i1 of depth k with a last A layer
— has ni=2 inputs
1
— size O(n-2""7%)

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof
By induction.

o (i1 of depth k with a last A layer e Collapse of two layers: depth k
— has ni=2 inputs
1
— size O(n-2""7%)

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)

1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.

Proof
By induction.

o (i1 of depth k with a last A layer ° CoIIapse of two layers: depth k
k=3 |
— has n= inputs e 2. 0= DNF of size 27" °
— size O(n-2""7%)

4/16

An acceleration

If more depth is available, this can be improved even further.

Lemma (Hastad)
1
There is a depth-k ACC circuit with O(n - 27" ?) gates for Parity.
Proof
By induction.
o (i1 of depth k with a last A layer ° CoIIapse of two layers: depth k
k=3 |
— has n= inputs e 2.n+7 DNF of size 27"
— size O(n-2""7%) e Total size O(n 2"k).

4/16

Proof 1: Switching lemma

A normal form

It is useful to assume that ACP circuit have a
special shape.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

— negations are not counted in the depth.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

5/16

A normal form

It is useful to assume that ACP circuit have a

special shape. Claim
Every AC® circuit of depth d can be
Definition (Alternating circuits) transformed into an alternating circuit of
An alternating circuit of depth d is a cir- depth d.
cuit with
e variables or their negations as input Proof
e d alternating layers of V— and A—
gates.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

5/16

A normal form

It is useful to assume that ACP circuit have a

special shape. Claim
Every AC® circuit of depth d can be
Definition (Alternating circuits) transformed into an alternating circuit of
An alternating circuit of depth d is a cir- depth d.
cuit with
e variables or their negations as input Proof
e d alternating layers of V— and A— X1 x5 X3 X
gates. , ,
— negations are not counted in the depth. \ /_‘ \ /_‘
— depth-2 alternating circuits are just DNFs V V
and CNFs. \ _ /
— the efficient circuits for Parity are already S
alternating. A

5/16

A normal form

It is useful to assume that ACP circuit have a

special shape. Claim
Every AC® circuit of depth d can be
Definition (Alternating circuits) transformed into an alternating circuit of
An alternating circuit of depth d is a cir- depth d.
cuit with
e variables or their negations as input Proof
e d alternating layers of V— and A— X1 x5 X3 X
gates. , ,
— negations are not counted in the depth. \ /_‘ \ /_‘
— depth-2 alternating circuits are just DNFs V V
and CNFs. \ _ ~
— the efficient circuits for Parity are already S
alternating. A
e Push negations to the leaves (po-
tentially duplicating gates).

5/16

A normal form

It is useful to assume that ACP circuit have a

special shape. Claim
Every AC® circuit of depth d can be
Definition (Alternating circuits) transformed into an alternating circuit of
An alternating circuit of depth d is a cir- depth d.
cuit with
e variables or their negations as input Proof
e d alternating layers of V— and A— X1 x5 X3 X
gates. , \
— negations are not counted in the depth. \ /_‘ _‘\ /
— depth-2 alternating circuits are just DNFs V A\
and CNFs. \ /
— the efficient circuits for Parity are already
alternating. A
e Push negations to the leaves (po-
tentially duplicating gates).

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

Claim

Every AC® circuit of depth d can be
transformed into an alternating circuit of
depth d.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

Proof
X1 X2 X2 X3 X4
V / A
A

e Push negations to the leaves (po-
tentially duplicating gates).

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

Claim

Every AC® circuit of depth d can be
transformed into an alternating circuit of
depth d.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

Proof
X1 X2 X2 X3 X4
V / A
A

e Push negations to the leaves (po-
tentially duplicating gates).

e Fill with dummy gates between
gates of the same type.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

Claim

Every AC® circuit of depth d can be
transformed into an alternating circuit of
depth d.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

Proof
X1 X2 X2 X3 X4
V A
~
\ \%
~
A

e Push negations to the leaves (po-
tentially duplicating gates).

e Fill with dummy gates between
gates of the same type.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

Claim

Every AC® circuit of depth d can be
transformed into an alternating circuit of
depth d.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

Proof
X1 X2 X2 X3 X4
V A
~
\ \%
~
A

e Push negations to the leaves (po-
tentially duplicating gates).

e Fill with dummy gates between
gates of the same type.

e Layer with dummy gates.

5/16

A normal form

It is useful to assume that ACP circuit have a
special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a cir-
cuit with
e variables or their negations as input
e d alternating layers of V— and A—
gates.

Claim

Every AC® circuit of depth d can be
transformed into an alternating circuit of
depth d.

— negations are not counted in the depth.
— depth-2 alternating circuits are just DNFs
and CNFs.

— the efficient circuits for Parity are already
alternating.

Proof

X1 X2 X2 X3 X4
\ /
AN \ /
N A
V | AN
V S
\ \ V
e
AN
e Push negations to the leaves (po-
tentially duplicating gates).
e Fill with dummy gates between

gates of the same type.
e Layer with dummy gates.

5/16

Depth reduction

Idea for lower bound for alternating circuits:

6/16

Depth reduction
Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.

6/16

Depth reduction

Idea for lower bound for alternating circuits:
e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is
computed by a depth k circuits, then it
can be computed by a depth k — 1
circuit.

6/16

Depth reduction

Idea for lower bound for alternating circuits:
e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is
computed by a depth k circuits, then it
can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

6/16

Depth reduction

Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is

computed by a depth k circuits, then it

can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

6/16

Depth reduction

Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is

computed by a depth k circuits, then it

can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

Example

\A>§<%/
\/ V2

N

6/16

Depth reduction

Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is

computed by a depth k circuits, then it

can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

Example

NS T
\/ \A/
N

o (x1Vx)A(—x1V-x)
= (x1 A —xo) V (x1 A x2)

6/16

Depth reduction

Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is

computed by a depth k circuits, then it

can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

Example

\)>< %/
\/ \/
\v/

o (x1Vx)A(—x1V-x)
= (x1 A —xo) V (x1 A x2)

6/16

Depth reduction

Idea for lower bound for alternating circuits:
e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is
computed by a depth k circuits, then it
can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

Example

N A AT
\ / \A/
N
>)

o (1 Vx3)A(—x2V x3)
= (—x1 A —x2) V (x3)

6/16

Depth reduction

Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is

computed by a depth k circuits, then it

can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

Example

N)></
\ / \ /
N
>)

o (1 Vx3)A(—x2V x3)
= (—x1 A —x2) V (x3)

6/16

Depth reduction

Idea for lower bound for alternating circuits:

e We have shown that alternating of
depth 2 cannot compute Parity.
e \We want to show that if Parity is

computed by a depth k circuits, then it

can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof
e By alternation, all parents of the
CNFs are V-gates.
e After replacement, we can merge
these V with the DNF ones.

Example

\)></
\\//

o (x1Vx)A(—x1V-x)
= (x1 A —xo) V (x1 A x2)

o (1 Vx3)A(—x2V x3)
=(—x1 A—x) V(x3)

6/16

Depth reduction

Idea for lower bound for alternating circuits:

We have shown that alternating of
depth 2 cannot compute Parity.

We want to show that if Parity is
computed by a depth k circuits, then it
can be computed by a depth k — 1
circuit.

Claim (Switching)

Let C be an alternating circuit of size
> 3. Replacing all CNFs at the leaves
by equivalent DNFs reduces the depth by
one.

Proof

e By alternation, all parents of the
CNFs are V-gates.

e After replacement, we can merge
these V with the DNF ones.

Example

\)></
\\//

o (x1Vx)A(—x1V-x)
= (x1 A —xo) V (x1 A x2)

o (1 Vx3)A(—x2V x3)
=(—x1 A—x) V(x3)

Definition (t-CNF)

A t-CNF is a CNF with t clauses.

6/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (Xgnfl V Xgn)
has only DNFs of size > 2",

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (Xgnfl V Xgn)
has only DNFs of size > 2",

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (Xgnfl V Xgn)
has only DNFs of size > 2",

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (X2,7,1 V Xgn)
has only DNFs of size > 2",

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

Definition (Restriction)
A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.

— * means that the variable is unassigned.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (X2,7,1 V Xgn)
has only DNFs of size > 2",

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.
— * means that the variable is unassigned.

— for f a Boolean function over X, a
restriction p defines a subfunction f,.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Definition
A [-restriction is a restriction that assigns

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (X2,7,1 V Xgn)
has only DNFs of size > 2",

* to exactly / variables.

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

Definition (Restriction)
A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.

— * means that the variable is unassigned.
— for f a Boolean function over X, a
restriction p defines a subfunction f,.

— f, has [variables for such p.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Definition
A [-restriction is a restriction that assigns

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (X2,7,1 V Xgn)
has only DNFs of size > 2",

* to exactly / variables.

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

Definition (Restriction)
A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.

— * means that the variable is unassigned.
— for f a Boolean function over X, a
restriction p defines a subfunction f,.

— f, has [variables for such p.
— we will draw such restrictions uniformly.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Definition
A [-restriction is a restriction that assigns
* to exactly / variables.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (X2,,,1 V Xgn)
has only DNFs of size > 2",

— f, has [variables for such p.
— we will draw such restrictions uniformly.

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

Definition (t-CNF and s-DNF)
A t-CNF is a CNF with t clauses.

A s-DNF is a DNF with s clauses.

Definition (Restriction)
A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.

— * means that the variable is unassigned.
— for f a Boolean function over X, a
restriction p defines a subfunction f,.

7/16

The switching lemma

Problem: Replacing a CNF by a DNF can
lead to an exponential blow-up.

Definition
A [-restriction is a restriction that assigns
* to exactly / variables.

Example

(X1 \Y X2) A\ (X3 V X4) VARERWAN (X2,,,1 V Xgn)
has only DNFs of size > 2",

— f, has [variables for such p.
— we will draw such restrictions uniformly.

Solution: CNFs can be replaced by small
DNFs with high probability after fixing some
inputs randomly.

Intuition: V and A gates can easily be fixed.

Definition (t-CNF and s-DNF)

A t-CNF is a CNF with t clauses.
A s-DNF is a DNF with s clauses.

Definition (Restriction)
A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.

— * means that the variable is unassigned.
— for f a Boolean function over X, a
restriction p defines a subfunction f,.

Theorem (Switching lemma)

For 0 < p <1 and f a Boolean function
f with n variables that can be expressed
as a t-CNF:

P,(f, has no s-DNF) < (8pt)*
where the probability is taken over all

pn-restrictions.

— Admitted.

7/16

Theorem (Furst, Saxe and Sipser, and Hastad)

All depth-k circuits for Parity have size at least 2%

(nF=T)

Proof

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T)

All depth-k circuits for Parity have size at least 2%

Proof

e By induction: we have proved the case kK = 2 already.

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T)

All depth-k circuits for Parity have size at least 2%

Proof

e By induction: we have proved the case kK = 2 already.

o Assume a depth-(k + 1) circuit of size S for Parity.

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T)

All depth-k circuits for Parity have size at least 2%

Proof

e By induction: we have proved the case kK = 2 already.

o Assume a depth-(k + 1) circuit of size S for Parity.
e Wlog. the first layer has V-gates.

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

All depth-k circuits for Parity have size at least 2%

(nF=T).

Proof

By induction: we have proved the case k = 2 already.

Assume a depth-(k + 1) circuit of size S for Parity.
Wiog. the first layer has V-gates.

We want to apply the switching lemma:

— but the fan-in of the first layer can be big.

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

All depth-k circuits for Parity have size at least 2%

(nF=T).

Proof

By induction: we have proved the case k = 2 already.

Assume a depth-(k + 1) circuit of size S for Parity.
Wiog. the first layer has V-gates.
We want to apply the switching lemma:
— but the fan-in of the first layer can be big.
We proceed in two steps:
e Step 1: fan-in reduction of the first layer.
e Step 2: depth reduction.

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T).

All depth-k circuits for Parity have size at least 2%

Proof
e By induction: we have proved the case kK = 2 already.
Assume a depth-(k + 1) circuit of size S for Parity.
Wiog. the first layer has V-gates.
We want to apply the switching lemma:
— but the fan-in of the first layer can be big.
We proceed in two steps:
e Step 1: fan-in reduction of the first layer.
e Step 2: depth reduction.
Key idea: Subfunctions of Parityare Parityitself or its negation.

8/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 1: fan-in reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 1: fan-in reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 1: fan-in reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

e The gates of the first layer can be
seen as 1-DNFs

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T).

All depth-k circuits for Parity have size at least 2%

Proof (Step 1: fan-in reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

e Set m=2log$S.

e The gates of the first layer can be
seen as 1-DNFs

e \We can apply the switching lemma

with
o t=1
e s—=m
_ 1
® p=7;

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T).

All depth-k circuits for Parity have size at least 2%

Proof (Step 1: fan-in reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

e Set m=2log$S.

e The gates of the first layer can be
seen as 1-DNFs

e \We can apply the switching lemma

e The probability that a chosen V-gate cannot
be turned into a s-CNF is at most:

<@pty=%=32

with
o t=1
e s—=m
_ 1
® p=7;

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T).

All depth-k circuits for Parity have size at least 2%

Proof (Step 1: fan-in reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

e Set m=2log$S.

e The gates of the first layer can be
seen as 1-DNFs

e \We can apply the switching lemma

e The probability that a chosen V-gate cannot
be turned into a s-CNF is at most:
<@pty=5=g
— Union bound: with probability < 1 at
least one the gate of the first layer cannot
be turned into a s-CNF.

with
o t=1
e s—=m
_ 1
® p=7;

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

All depth-k circuits for Parity have size at least 2%

(nF=T).

Proof (Step 1: fan-in reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

e Set m=2log$S.

e The gates of the first layer can be
seen as 1-DNFs

e \We can apply the switching lemma
with

o t=1
e s=m

_ 1
.p_ﬁ

e The probability that a chosen V-gate cannot

be turned into a s-CNF is at most:
<@pt)f=5=3

— Union bound: with probability < 1 at
least one the gate of the first layer cannot
be turned into a s-CNF.

— There is a pn-restriction for which all
V-gates can be turned into s-CNFs.

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

All depth-k circuits for Parity have size at least 2%

(nF=T).

Proof (Step 1: fan-in reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

e Set m=2log$S.

e The gates of the first layer can be
seen as 1-DNFs

e \We can apply the switching lemma
with

o t=1
e s=m

_ 1
.p_ﬁ

e The probability that a chosen V-gate cannot

be turned into a s-CNF is at most:
<@pty=5=g
— Union bound: with probability < 1 at
least one the gate of the first layer cannot
be turned into a s-CNF.
— There is a pn-restriction for which all
V-gates can be turned into s-CNFs.

e After collasping the A-gates, we have a
circuit for Parity with:

depth k +1

size at most S?

fan-in of the first layer at most m

has 1—’% variables.

9/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 2: depth reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 2: depth reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 2: depth reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

e \We can apply the switching lemma
to the CNFs of the second layer

with
e t=m
e s—=m
o p— L
P= 16m

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 2: depth reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

e \We can apply the switching lemma
to the CNFs of the second layer

e The probability that a chosen A-gate cannot
be turned into a s-DNF is at most:

<(Bpt)=2%=3

with
e t=m
e s—=m
o p— L
P = 16m

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 2: depth reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

e \We can apply the switching lemma
to the CNFs of the second layer
with

e t=m
e s=m
o p— 1

P= 16m

e The probability that a chosen A-gate cannot
be turned into a s-DNF is at most:
<@pt)f=5=3
— Union bound: with probability < 1 at
least one the gate of the second layer

cannot be turned into a s-DNF.

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

_1
All depth-k circuits for Parity have size at least 227" *).

Proof (Step 2: depth reduction)

e The circuit has depth k + 1, size S
and the first layer has V-gates.

e Set m=2log$S.

e \We can apply the switching lemma
to the CNFs of the second layer
with

e t=m
e s=m
o p— 1

P= 16m

e The probability that a chosen A-gate cannot
be turned into a s-DNF is at most:
<@pty=5=g
— Union bound: with probability < 1 at
least one the gate of the second layer
cannot be turned into a s-DNF.

— There is a pn-restriction for which all

A-gates can be turned into s-DNFs.

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

All depth-k circuits for Parity have size at least 2%

(nF=T).

Proof (Step 2: depth reduction)
e The circuit has depth k + 1, size S

and the first layer has V-gates.

e Set m=2log$S.

e \We can apply the switching lemma
to the CNFs of the second layer
with

e t=m
e s=m
o p— 1

P= 16m

e The probability that a chosen A-gate cannot
be turned into a s-DNF is at most:
<@pty=5=g
— Union bound: with probability < 1 at
least one the gate of the second layer
cannot be turned into a s-DNF.

— There is a pn-restriction for which all
A-gates can be turned into s-DNFs.

o After collasping the A-gates, we have a

circuit for Parity with:
e depth k
e size at most S?
e has ;g7 variables.

10/16

Theorem (Furst, Saxe and Sipser, and Hastad)

(nF=T).

All depth-k circuits for Parity have size at least 2%

Proof (Step 2: depth reduction)

e The circuit has depth k +1, size 5 e The probability that a chosen A-gate cannot

and the first layer has V-gates. be turned into a s-DNF is at most:
e Set m=2log$S. <(8pt)5* 1 1

e \We can apply the switching lemma z

= 5 =] ?
— Union bound: with probability < 1 at
to the CNFs of the second layer

least one the gate of the second layer

il cannot be turned into a s-DNF.
= (i — There is a pn-restriction for which all
*e=m A-gates can be turned into s-DNFs.
® P= i6m o After collasping the A-gates, we have a
circuit for Parity with:
e depth k

e size at most S2
n .
e has T variables.

)1/(k—1>

e By induction: S? < 2(163m , which gives log(S) < cint for a constant cy.

10/16

Proof 2: Polynomial approximation

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.
+ =V X = A

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.
+ =V X = A
— circuits without sharing

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.

+ =V X = A
— circuits without sharing
— Not helping

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.
+ =V X = A
— circuits without sharing
— Not helping
— We want a field.

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.
+ =V X = A
— circuits without sharing
— Not helping
— We want a field.
2" try: polynomials over 5.
0+1=1+40=1
0+0=1+1=0

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.

+ =V X = A

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=1+40=1
0+0=1+1=0

— Parity is Y., X

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.

+ =V X = A

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=1+40=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).
11/16

Polynomials

Polynomials are simpler objects than circuits. 3" try: polynomials over F3 = {0,1,2}.
— algebraic instead of combinatoric. + and x are the usual mod 3
Proof Idea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

1%t try: Boolean polynomials.

+ =V X = A

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=1+40=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).
11/16

Polynomials

Polynomials are simpler objects than circuits. 3rd try: polynomials over 3 = {0, 1,2}.
— algebraic instead of combinatoric. + and x are the usual mod 3
— What do we do with 27

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

15t try: Boolean polynomials.

+ =V X = A

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=14+0=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).
11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

3" try: polynomials over F3 = {0, 1,2}.
+ and X are the usual mod 3
— What do we do with 27

Definition
A Boolean function f(X) is represented
by a polynomial p(Xx) over F3 if f(a) =

15t try: Boolean polynomials.

+=V

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=14+0=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).

X =A

p(3) for all 3 with only 0 and 1.

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

3" try: polynomials over F3 = {0, 1,2}.

+ and X are the usual mod 3

— What do we do with 27

Definition

A Boolean function f(X) is represented
by a polynomial p(Xx) over F3 if f(a) =
p(3) for all 3 with only 0 and 1.

15t try: Boolean polynomials.

+ =V X = A

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=14+0=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).

Example
Parity = ([]/_,(xi + 1)) — 1

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

15t try: Boolean polynomials.

+=V

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=14+0=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).

X =A

3" try: polynomials over F3 = {0, 1,2}.
+ and X are the usual mod 3
— What do we do with 27

Definition

A Boolean function f(X) is represented
by a polynomial p(Xx) over F3 if f(a) =
p(3) for all 3 with only 0 and 1.

Example
Parity = ([]/_,(xi + 1)) — 1

— We look at the degree.
— It looks that Parity needs high degree.

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

15t try: Boolean polynomials.

+=V

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=14+0=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).

X =A

3" try: polynomials over F3 = {0, 1,2}.
+ and X are the usual mod 3
— What do we do with 27

Definition

A Boolean function f(X) is represented
by a polynomial p(Xx) over F3 if f(a) =
p(3) for all 3 with only 0 and 1.

Example
Parity = ([]/_,(xi + 1)) — 1

— We look at the degree.
— It looks that Parity needs high degree.

Example
-x=1-—x

Vil xi =1 - [, (26 +1)

11/16

Polynomials

Polynomials are simpler objects than circuits.
— algebraic instead of combinatoric.

Proof ldea

1) Capture functions computed by AC°
circuits by simple polynomials.

2) Show that Parity cannot be cap-
tured by such simple polynomials.

15t try: Boolean polynomials.

+=V

— circuits without sharing

— Not helping

— We want a field.

2" try: polynomials over 5.
0+1=14+0=1
0+0=1+1=0

— Parity is Y., X

— One of the simplest polynomial.

— Not a chance to have 2).

X =A

3" try: polynomials over F3 = {0, 1,2}.
+ and X are the usual mod 3
— What do we do with 27

Definition

A Boolean function f(X) is represented
by a polynomial p(Xx) over F3 if f(a) =
p(3) for all 3 with only 0 and 1.

Example
Parity = ([]/_,(xi + 1)) — 1

— We look at the degree.
— It looks that Parity needs high degree.

Example
-x=1-—x

Vil xi =1 - [, (26 +1)

— Seems that V also needs high degree...

11/16

Last try: the approximation technique

Idea: Relax the notion of representation.
— we will approximate circuits with
polynomials over 5.

Formalization of 1):

Proof Idea
1) Approximate functions computed
by ACP circuits by low-degree poly-
nomials over 3.
2) Parity cannot be approximated by
low-degree polynomials over F3.

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

distance(f,p) < M -2""".

Approximate means being correct on many
inputs.

— proved later.

Formalization of 2):

Definition

For f(x) a function with n inputs and p
a polynomial:

distance(f, p) = |{3 € {0,1}" | p(3) #
f(a)}|

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

— Admitted.

12/16

Parity ¢ AC°

Theorem (Razborov, Smolenski)

1
All depth-d circuits for Parity have size at least 2%(7%7),

13/16

Parity ¢ AC°

Theorem (Razborov, Smolenski)

1
All depth-d circuits for Parity have size at least 2%(7%7),

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

distance(f,p) < M -2""".

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

13/16

Parity ¢ AC°

Theorem (Razborov, Smolenski)

1
All depth-d circuits for Parity have size at least 2%(7%7),

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

distance(f,p) < M -2""".

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

Proof

e Let C be a circuit for Parity of depth d and size M.

13/16

Parity ¢ AC°

Theorem (Razborov, Smolenski)

1
All depth-d circuits for Parity have size at least 2%(7%7),

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

distance(f,p) < M -2""".

Proof
e Let C be a circuit for Parity of depth d and size M.
e With r = n2a /2: there is p of degree < v/ such that:

distance(Parity, p) < M - gn—n'/*'/2,

13/16

Parity ¢ AC°

Theorem (Razborov, Smolenski)

1
All depth-d circuits for Parity have size at least 2%(7%7),

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

distance(f,p) < M -2""".

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

Proof

o distance(Parity, p) > ¢ - 2".

e Let C be a circuit for Parity of depth d and size M.
e With r = n2a /2: there is p ofldggree < +/n such that:
distance(Parity, p) < M - 2"—" e,

13/16

Parity ¢ AC°

Theorem (Razborov, Smolenski)

1
All depth-d circuits for Parity have size at least 2%(7%7),

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

distance(f,p) < M -2""".

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

Proof

o distance(Parity, p) > ¢ - 2".
e Thus, c-27 < M.2n=n"*/2

e Let C be a circuit for Parity of depth d and size M.
e With r = n2a /2: there is p of degree < v/ such that:

distance(Parity, p) < M - gn—n'/*'/2,

13/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:

distance(f,p) < M -2"7".

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:

distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:

distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.

— Wilog. there are no A-gates.

14/16

Lemma
For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

14/16

Lemma
For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

Proof
We approximate inductively every gate g
by pg:
e An input gate x; by x;.
e A —-gate —h by 1 — pp.
o A V-gate \Va by
pv(Phys - - s Phy)-

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

Proof
We approximate inductively every gate g
by pg:
e An input gate x; by x;.
e A —-gate —h by 1 — pp.
o A V-gate \Va by
pv(Phys - - s Phy)-

Degree bound:
e —-gates do not increase the degree.

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in

the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

Proof
We approximate inductively every gate g
by pg:
e An input gate x; by x;.
e A —-gate —h by 1 — pp.
o A V-gate \Va by
pv(Phys - - s Phy)-

Degree bound:

e —-gates do not increase the degree.

e \/-gates multiply the degree by 2r:
deg(pg) < 2r - max(deg(pn,))-

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

Proof
We approximate inductively every gate g
by pg:
e An input gate x; by x;.
e A —-gate —h by 1 — pp.
o A V-gate \Va by
pv(Phys - - s Phy)-

Degree bound:
e —-gates do not increase the degree.
e \/-gates multiply the degree by 2r:
deg(pg) < 2r - max(deg(py,))-
e For a gate at depth i, deg(g) <

(2r)".

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in
the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

Proof
We approximate inductively every gate g
by pg:
e An input gate x; by x;.
e A —-gate —h by 1 — pp.
o A V-gate \Va by
pv(Phys - - s Phy)-

Degree bound:
e —-gates do not increase the degree.
e \/-gates multiply the degree by 2r:
deg(pg) < 2r - max(deg(py,))-
e For a gate at depth i, deg(g) <
(2r).

Distance bound:
e —-gates do not introduce errors.

14/16

Lemma

For 1 < r < n, there is a polynomial p of degree < (2r)? such that:
distance(f,p) < M -2"7".

Proof by induction, we approximate gates in

the circuit and combine them top-down.
— Wilog. there are no A-gates.

Claim

For 1 < r < n, there is a poly-
nomial py of degree < 2r such that
distance(V, py) < 2"

— Proof next slide

Proof
We approximate inductively every gate g
by pg:
e An input gate x; by x;.
e A —-gate —h by 1 — pp.
o A V-gate \Va by
pv(Phys - - s Phy)-

Degree bound:
e —-gates do not increase the degree.
e \/-gates multiply the degree by 2r:
deg(pg) < 2r - max(deg(py,))-
e For a gate at depth i, deg(g) <
(2r).

Distance bound:

e —-gates do not introduce errors.

e for a V-gate, assume pj, is wrong
for at most My - 2"~" inputs, where
M is the size of the subcircuit of
hy.
Then p, is wrong for at most (M; +
coo+ My +1)-2""" inputs.

14/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof

1) Define a polynomial p for all € € FY
uniformly drawn.
2) Show that for all a:

Pelp(3) # V(3)] < 3.

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Pelp(a) # V(a)] <37".
3) Define the random variable for the
distance between p and V:

X = Zae{o,l}n Lo@)£v()-

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Pelp(a) # V(a)] <37".
3) Define the random variable for the
distance between p and V:

X = Zae{o,l}n Lp@)£v(a)-
Its expectancy is

< Zse{o,l}" 327

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all © € FY

uniformly drawn.
2) Show that for all a:
Polp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY e For € € F? define:
uniformly drawn. ~ P(X) = (crxt + -+ + doxp)?
2) Show that for all a:
Pelp(a) # V(@] <37,
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)£v(a)-
Its expectancy is
< Y acroayr 3 £ 2.
4) There is a € such that
distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY e For ¢ € F] define:
uniformly drawn. p(X) = (cixq + - - + dpxn)?
2) Show that for all a: — Always in {0,1}: 0> = 0 and

Pelp(a) # V(a)] <37". 12=22=1.

3) Define the random variable for the

distance between p and V:

X = Zae{o,l}n Lp@)#v(a)-

Its expectancy is

< Caeqon 3 <27
4) There is a € such that

distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € IF’3V e For € € I} define:
uniformly drawn. p(X) = (cixq + - - + dpxn)?
2) Show that for all a: — Always in {0,1}: 0> = 0 and
Polp(3) # V(3)] < 3. 2o92o 1,
3) Define the random variable for the e Fix some 3:

distance between p and V:

X = 255{0,1}n Lp@)#v(a)-

Its expectancy is

< Zse{o,l}" 3T
4) There is a € such that

distance(V, p) < 2" ".

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Polp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

For ¢ € F5 define:

p(X) = (cixq + - - + dpxn)?

— Always in {0,1}: 02 =0 and
12=22=1.

e Fix some a:
o if V(3) = 0 then p(3) = 0, hence we

have 2).

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Polp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

For ¢ € F5 define:

p(X) = (cixq + - - + dpxn)?

— Always in {0,1}: 02 =0 and
12=22=1.

e Fix some a:
o if V(3) = 0 then p(3) = 0, hence we

have 2).

if V(3) =1, then

p(@) = (di + -+ + dj,)? for some
indices.

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Polp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

For ¢ € F5 define:

p(X) = (cixq + - - + dpxn)?

— Always in {0,1}: 02 =0 and
12=22=1.

e Fix some a:
o if V(3) = 0 then p(3) = 0, hence we

have 2).

if V(3) =1, then

p(@) = (di + -+ + dj,)? for some
indices.

— the components are independent
thus the sum has the same probability
of being 0,1 or 2.

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Polp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

For ¢ € F5 define:

p(X) = (cixq + - - + dpxn)?

— Always in {0,1}: 02 =0 and
12=22=1.

e Fix some a:
o if V(3) = 0 then p(3) = 0, hence we

have 2).

if V(3) =1, then

p(@) = (di + -+ + dj,)? for some
indices.

— the components are independent
thus the sum has the same probability
of being 0,1 or 2.

— Thus we have 2).

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Polp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

For ¢ € F5 define:

p(X) = (cixq + - - + dpxn)?

— Always in {0,1}: 02 =0 and
12=22=1.

e Fix some a:
o if V(3) = 0 then p(3) = 0, hence we

have 2).

if V(3) =1, then

p(@) = (di + -+ + dj,)? for some
indices.

— the components are independent
thus the sum has the same probability
of being 0,1 or 2.

— Thus we have 2).

This proves the claim for r = 1.

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof

1) Define a polynomial p for all © € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.

Pclp(3) # V(3)] < 3.

3) Define the random variable for the

distance between p and V:

X = Zae{o,l}n Lp@)#v(a)-

Its expectancy is

< Sacqoay 3 <27
4) There is a € such that

distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof

1) Define a polynomial p for all © € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.

Pz[p(3) # V(3)] <37". — depends on ¢ € F}.

3) Define the random variable for the

distance between p and V:

X = Zae{o,l}n Lp@)#v(a)-

Its expectancy is

< 256{0,1}" 3= < on—r.
4) There is a € such that

distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof

1) Define a polynomial p for all © € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.
Pz[p(3) # V(3)] <37". — depends on ¢ € F}.
3) Define the random variable for the o Define p(x) =1 —[[;_;(1 — qi(x)).

distance between p and V:

X = Zae{o,l}n Lp@)£v(a)-

Its expectancy is

< acone 37 <27,
4) There is a € such that

distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof

1) Define a polynomial p for all © € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.
Pz[p(3) # V(3)] <37". — depends on ¢ € F}.
3) Define the random variable for the o Define p(x) =1 —[[;_;(1 — qi(x)).
distance between p and V: — Evaluates to 0 iff all g; evaluates

X = Zae{o,l}n Lo@)2v(E)- to 0.

Its expectancy is

< Zae{o,l}" 3T
4) There is a € such that

distance(V, p) < 2" ".

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof

1) Define a polynomial p for all © € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.
Pz[p(3) # V(3)] <37". — depends on € € FY.
3) Define the random variable for the e Define p(x) =1 —[[;_,(1 — qi(X)).
distance between p and V: — Evaluates to 0 iff all g; evaluates
X =2 sci01y Lo@ev)- E 0. a
Its expectancy is e Fix some a:

< Zae{o,l}" 37r<2m
4) There is a € such that
distance(V, p) < 2" ".

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Pclp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

Use probability amplification.

Set N = rn, and define r polynomials
pi,---,Pr as before.

— depends on ¢ € F}.

Define p(x) =1 — [[;_;(1 — qi(X)).
— Evaluates to 0 iff all g; evaluates
to 0.

e Fix some a:
o if V(a) = 0 then all p;(a) =0 and

thus p(3) = 0, hence we have 2).

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof _
1) Define a polynomial p for all © € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.
Pz[p(3) # V(3)] <37". — depends on ¢ € F}.
3) Define the random variable for the o Define p(x) =1 —[[;_;(1 — qi(x)).
distance between p and V: — Evaluates to 0 iff all g; evaluates
X = Zae{o,l}" Lp@)#v(a)- t(? 0. _
Its expectancy is e Fix some a:
<Y acqoar 37T <27 e if V(@) = 0 then all p;(3) =0 and
4) There is a € such that Tchus p(a) = 0, hence we have 2).
distance(V, p) < 2" ". e if V(3) =1, then
Plp(a) # 1] = I1, Plp(3) # 1] by
independence.

15/16

Claim

For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof
1) Define a polynomial p for all € € FY

uniformly drawn.
2) Show that for all a:
Pclp(3) # V(3)] < 3.
3) Define the random variable for the
distance between p and V:
X = Zae{o,l}n Lp@)#v(a)-
Its expectancy is
S 256{071},1 3—r S 2n—r.
4) There is a € such that
distance(V, p) < 2" ".

Use probability amplification.

Set N = rn, and define r polynomials
pi,---,Pr as before.

— depends on ¢ € F}.

Define p(x) =1 — [[;_;(1 — qi(X)).
— Evaluates to 0 iff all g; evaluates
to 0.

e Fix some a:
o if V(a) = 0 then all p;(a) =0 and

thus p(3) = 0, hence we have 2).
if V(3) =1, then

Pp(a) # 1] = I1, Plp.(3) # 1] by
independence.

— Thus we have 2).

15/16

Claim
For 1 < r < n, there is a polynomial py of degree < 2r such that distance(V, py) < 2" "

— The return of the probabilistic method.

Proof _
1) Define a polynomial p for all € € FY Use probability amplification.
uniformly drawn. e Set N = rn, and define r polynomials
2) Show that for all a@: pi,...,p, as before.
Pz[p(3) # V(3)] <37". — depends on ¢ € F}.
3) Define the random variable for the o Define p(x) =1 —[[;_;(1 — qi(x)).
distance between p and V: — Evaluates to 0 iff all g; evaluates
X = Zae{o,l}" Lp@)#v(a)- t(? 0. _
Its expectancy is e Fix some a:
<Y acqoar 37T <27 e if V(@) = 0 then all p;(3) =0 and
4) There is a € such that Tchus p(a) = 0, hence we have 2).
distance(V, p) < 2" ". e if V(3) =1, then
Plp(a) # 1] = I1, Plp(3) # 1] by
independence.

— Thus we have 2).
e This proves the claim for any r.

15/16

Recap

We have seen:
e Reduction from ADD" to Parity.

16/16

Recap

We have seen:
e Reduction from ADD" to Parity.
e Every regular language is in NC!.

16/16

Recap

We have seen:
e Reduction from ADD" to Parity.
e Every regular language is in NCE.
e Parity can be rather efficiently computed but we have one of the highlights of complexity:

Theorem
Parity ¢ AC®

16/16

Recap

We have seen:
e Reduction from ADD" to Parity.
e Every regular language is in NCE.
e Parity can be rather efficiently computed but we have one of the highlights of complexity:

Theorem
Parity ¢ AC®

e Two different proofs:
e Reducing the depth iteratively with random restrictions: switching lemma.
e Approximate AC® circuits by low-degree polynomials.

16/16

Boolean circuits and regular languages

Corentin Barloy Michael Walter Thomas Zeume

RUHR
UNIVERSITAT
BOCHUM

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?
— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?
— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes’s behaviours are reflected on the regular languages it computes.

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

Separation Completness

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

Separation Completness

Definition (Separator)

A separator for a class C, from a class Cy
is a language L that belongs in C,/C;.

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?
— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)

— optimizing them is important

— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

Separation

Completness

Definition (Separator)

A separator for a class C, from a class Cy
is a language L that belongs in C,/C;.

— We want to find separators to compare
the expressive power of classes.

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

Separation Completness
Definition (Separator) Definition (Reduction)
A separator for a class C, from a class Cy A projection from L; to L, is a circuit that
is a language L that belongs in C,/C;. computes L; with a single gate labelled
— We want to find separators to compare by L2,‘ Itis polyr}omlal if the fan-in of the
- gate is polynomial.
the expressive power of classes.

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

Separation Completness
Definition (Separator) Definition (Reduction)
A separator for a class C, from a class Cy A projection from L; to L, is a circuit that
is a language L that belongs in C,/C;. computes L; with a single gate labelled
by Lo. It is polynomial if the fan-in of the

— We want to find separators to compare

: ate is polynomial.
the expressive power of classes. & poly

Definition (Completeness)

A language L is complete under projec-
tions for a class C if L € C and there is a
projection from every language in C to L.

1/15

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

— regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
— optimizing them is important
— complexity under P: sequential vs parallel

— Many classes's behaviours are reflected on the regular languages it computes. (under NCl.)

Separation Completness
Definition (Separator) Definition (Reduction)
A separator for a class C, from a class Cy A projection from L; to L, is a circuit that
is a language L that belongs in C,/C;. computes L; with a single gate labelled
by Lo. It is polynomial if the fan-in of the

— We want to find separators to compare

: ate is polynomial.
the expressive power of classes. & poly

Definition (Completeness)

A language L is complete under projec-
tions for a class C if L € C and there is a
projection from every language in C to L.

Many separators and complete languages can be chosen regular.
1/15

Importance of regular languages

Separation

Parity is a regular separator for NC* from
AC°.

2/15

Separation

Parity is a regular separator for NC* from
AC°.

— Can we express all of NC! using Parity
gates for free?

2/15

Separation

Parity is a regular separator for NC* from
AC°.

— Can we express all of NC! using Parity
gates for free?

Definition (Modular languages)

For m € N, the language of binary strings
with an number of 1 divisible by m is
denoted by Mod,,.

2/15

Separation

Parity is a regular separator for NC* from
AC°.

— Can we express all of NC! using Parity
gates for free?

Definition (Modular languages)

For m € N, the language of binary strings
with an number of 1 divisible by m is
denoted by Mod,,.

Definition (AC® with counting)

For m € N, ACC°[m] is the class of lan-
guages computable by an AC® circuits
with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACCP.

2/15

Sepa ration Theorem (Razborov, Smolenski)

For primes p # g, Mod, is not in
Parity is a regular separator for NC! from ACC[p].

AC°.

— Can we express all of NC! using Parity
gates for free?

Definition (Modular languages)

For m € N, the language of binary strings
with an number of 1 divisible by m is
denoted by Mod,,.

Definition (AC® with counting)

For m € N, ACC°[m] is the class of lan-
guages computable by an AC® circuits
with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACCP.

2/15

Separation Theorem (Razborov, Smolenski)

For primes p # g, Mod, is not in
Parity is a regular separator for NC! from ACC[p].

AC°.

— Can we express all of NC! using Parity

— Similar proof as last lecture.
te for free? — Gives regular separators for
gates for free: AC® C ACC[p] € NC! for a prime p.

Definition (Modular languages)

For m € N, the language of binary strings
with an number of 1 divisible by m is
denoted by Mod,,.

Definition (AC® with counting)

For m € N, ACC°[m] is the class of lan-
guages computable by an AC® circuits
with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACCP.

2/15

Separation Theorem (Razborov, Smolenski)
For primes p # g, Mod, is not in

Parity is a regular separator for NC! from ACC[p].

AC. 1. , — Similar proof as last lecture.

— Can we express all of NC* using Parity —+ Gives regular separators for

gates for free? AC® C ACC[p] € NC! for a prime p.
Definition (Modular languages) Now is ACC® = NC'?

For m € N, the language of binary strings
with an number of 1 divisible by m is
denoted by Mod,,.

Definition (AC® with counting)

For m € N, ACC°[m] is the class of lan-
guages computable by an AC® circuits
with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACCP.

2/15

Separation Theorem (Razborov, Smolenski)
For primes p # g, Mod, is not in

Parity is a regular separator for NC! from ACC[p].

AC. 1. , — Similar proof as last lecture.

— Can we express all of NC* using Parity —+ Gives regular separators for

gates for free? AC® C ACC[p] € NC! for a prime p.
Definition (Modular languages) Now is ACC® = NC'? We do not know but:
For m € N, the language of binary strings Example (Ss)

with an number of 1 divisible by m is

denoted by Mod,,. b b b

\J
Definition (AC® with counting)
For m € N, ACC°[m] is the class of lan- 5
guages computable by an AC® circuits >
with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACCP.

2/15

Separation

Parity is a regular separator for NC* from
AC°.

— Can we express all of NC! using Parity
gates for free?

Theorem (Razborov, Smolenski)

For primes p # g, Mod, is not in
ACC[p].

Definition (Modular languages)

For m € N, the language of binary strings
with an number of 1 divisible by m is
denoted by Mod,,.

Definition (AC® with counting)

For m € N, ACC°[m] is the class of lan-
guages computable by an AC® circuits
with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACCP.

— Similar proof as last lecture.
— Gives regular separators for
AC® C ACC[p] € NC! for a prime p.

Now is ACC® = NC'? We do not know but:

Example (55)

b b b
H@ = % 2 (q
N

Theorem (Barrington)

Ss is complete under projections for
NC*.

2/15

Separation Theorem (Razborov, Smolenski)
For primes p # g, Mod, is not in

Parity is a regular separator for NC! from ACC[p].

AC. 1. , — Similar proof as last lecture.

— Can we express all of NC* using Parity —+ Gives regular separators for

gates for free? AC® C ACC[p] € NC! for a prime p.
Definition (Modular languages) Now is ACC® = NC'? We do not know but:
For m € N, the language of binary strings Example (Ss)

with an number of 1 divisible by m is

denoted by Mod,,. b b b
\J
Definition (AC® with counting)
For m € N, ACC°[m] is the class of lan- 5
guages computable by an AC® circuits >

with some gates labelled by Mod,,.

If it can use any Mod,, gates, it gives the
class ACC. Ss is complete under projections for

NC!.
— If there is a separator for NC! from ACCO,
then there is one regular. 2/15

Theorem (Barrington)

Below AC°

Let us look at the depth hierarchy of ACC.

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

—>AC0:UIZ,-:U,.I'I,-

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

— ACO = UIZ,- = U,.I'I,-
Are some of these classes equal?

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

— ACO = UIZ,- = U,.I'I,-
Are some of these classes equal?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

— ACO = UIZ,- = U,.I'I,-
Are some of these classes equal?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

— Od = ZZ/Ad

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

Theorem
Oy (resp. Ay) is complete under projec-
tions for X4 (resp. My).

— ACO = UI-Z,' = U,.I'I,-
Are some of these classes equal?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

— Od = ZZ/Ad

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

Theorem
Oy (resp. Ay) is complete under projec-
tions for X4 (resp. My).

— ACO = UIZ,- = U,.I'I,-
Are some of these classes equal?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

— Od = ZZ/Ad

— proof next slide.
— Another regular languages that are
complete for a natural class.

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

Theorem
Oy (resp. Ay) is complete under projec-
tions for X4 (resp. My).

— ACO = UIZ,- = U,.I'I,-
Are some of these classes equal?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

— Od = ZZ/Ad

— proof next slide.
— Another regular languages that are
complete for a natural class.

Do they also separates the hierarchies?

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

Theorem
Oy (resp. Ay) is complete under projec-
tions for X4 (resp. My).

— ACO = UI-Z,' = U,.I'I,-
Are some of these classes equal?

— proof next slide.
— Another regular languages that are
complete for a natural class.

Do they also separates the hierarchies?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

Theorem (Sipser, Hastad)

Og4 is not in Zy_1 UTy.
Agisnotin gy UMy 1.

— Od = ZZ/Ad

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

Theorem
Oy (resp. Ay) is complete under projec-
tions for X4 (resp. My).

— ACO = UI-Z,' = U,.I'I,-
Are some of these classes equal?

— proof next slide.
— Another regular languages that are
complete for a natural class.

Do they also separates the hierarchies?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

Theorem (Sipser, Hastad)

Og4 is not in Zy_1 UTy.
Agisnotin gy UMy 1.

— Od = ZZ/Ad

— proof by switching lemma

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Definition

For d € N, the class of languages com-
puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
My).

Theorem
Oy (resp. Ay) is complete under projec-
tions for X4 (resp. My).

— ACO = UI-Z,' = U,.I'I,-
Are some of these classes equal?

— proof next slide.
— Another regular languages that are
complete for a natural class.

Do they also separates the hierarchies?

Definition

We define regular languages over an al-
phabet >, = {0, 1,#q,... ,#dfl}.

0, =0*10*

A =1*

Odt1 =X 1 #dAdtal g,y

Adi1 = (#40q)*#4

Theorem (Sipser, Hastad)

Og4 is not in Zy_1 UTy.
Agisnotin gy UMy 1.

— Od = ZZ/Ad

— proof by switching lemma
— Unlike Parity, random restrictions easily
make Oy and Ay trivial.

3/15

Below AC°

Let us look at the depth hierarchy of ACC.

Theorem
Definition Oy (resp. Ay) is complete under projec-
For d € N, the class of languages com- tions for X, (resp. y).

puted by alternating circuits of polyno-
mial size and depth d with an output V-
gate (resp. A-gate) is denoted X, (resp.
ﬂd).

S ACO — U, = UM Do they also separates the hierarchies?

— proof next slide.
— Another regular languages that are
complete for a natural class.

Are some of these classes equal? : N
Theorem (Sipser, Hastad)

Definition Og4 is not in Zy_1 UTy.

We define regular languages over an al- Agisnotin Xy UMy 1.

phabet 24 - {0; 1,#1,...,#4_1}. — proof by switching lemma
e O = 0* 10 — Unlike Parity, random restrictions easily
e A=1)) make Oy and Ay trivial.
® Og1 = Zd+1#d*Ad#dzd+1 — We need to draw random restrictions with
* Agi1 = (#40d)"#d a carefully chosen distribution.

— Od = ZZ/Ad

3/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

e By induction:

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

e By induction:
e (O is the V function and A; is the A function.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

e By induction:
e (O is the V function and A; is the A function.

o Let Cy be a circuit in My for Ay.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

e By induction:
e (O is the V function and A; is the A function.

o Let Cy be a circuit in My for Ay.
e Then Oy41 can be computed by:

\/ #a(i) A #4(j) A Cali, j]

i<j

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

By induction:
O, is the V function and A; is the A function.

Let Cy be a circuit in [y for Ay.
Then O441 can be computed by:

\/ #a(i) A #4(j) A Cali, j]

i<j

e The extra A are absorbed by Cy

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

By induction:
O, is the V function and A; is the A function.

Let Cy be a circuit in [y for Ay.
Then O441 can be computed by:

\/ #a(i) A #4(j) A Cali, j]

i<j

e The extra A are absorbed by Cy
e There is a quadratic number of poly size circuits.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and A, are in X,)

e By induction:
e (O is the V function and A; is the A function.

Let Cy be a circuit in [y for Ay.
Then O441 can be computed by:

\/ #a(i) A #4(j) A Cali, j]

i<j

e The extra A are absorbed by Cy
e There is a quadratic number of poly size circuits.

Ay is the complement of Oy4: the negation of that circuit gives a [y circuit for Ag.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

e Remove sharing. — remains of poly size

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

X1 X2 X3 X4 Xs
\ /IS N\ /
vV VvV V vV -V V

\A/ \A/
\v/

e Remove sharing. — remains of poly size

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

X1 X2 X3 X4 Xs
\ /IS N\ /
vV VvV V vV -V V

\A/ \A/
\v/

e Remove sharing. — remains of poly size
e Duplicate and order variables.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

X1X2 XoX3 XoX4 X2X3 XoX4 X4Xp

NN

vV vV VvV vV vV V

\A/ \A/
\\\v///

e Remove sharing. — remains of poly size
e Duplicate and order variables.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

X1X2 XoX3 XoX4 X2X3 XoX4 X4Xp

NN

vV vV VvV vV vV V

N1/ N4
A \ / A
V
e Remove sharing. — remains of poly size

e Duplicate and order variables.
o Add delimiters.

4/15

Proof of completeness

Theorem
Oy (resp. Ag) is complete under projections for X4 (resp. My).

Proof (O, and Ay are complete)

X1 Xo#1 X0 X3#1 X0 Xgq#0 X0 X3#71 Xo X4 #1 X4 X5

NN

vV vV VvV vV vV V

N1/ N4
A \ / A
V
e Remove sharing. — remains of poly size

e Duplicate and order variables.
o Add delimiters.

4/15

Proof of completeness

Theorem

Oy (resp. Ag) is complete under projections for X4 (resp. My).

o Add delimiters.

Proof (O, and Ay are complete)

X1 X5

7 A

X3

X1 X0 #1 Xo X3#1 Xo Xq#o Xo X371 Xo X4 #1 X4 X5

NN

vV vV VvV vV vV V

\A/ 03 \A/
\\\v///

e Remove sharing. — remains of poly size
e Duplicate and order variables.

4/15

ADD and AC°

ADD is regular:

5/15

ADD and AC°

ADD is regular:
— there is a finite automata that take a
n

. X X
string (yi) (yn) and outputs x + y.

5/15

ADD and AC°

ADD is regular:

— there is a finite automata that take a
n

. X X
string (yi) (yn) and outputs x + y.

Example

5/15

ADD and AC°

ADD is regular:

— there is a finite automata that take a
n

. X X
string (yi) (yn) and outputs x + y.

Example

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

5/15

ADD and AC°

ADD is regular:

— there is a finite automata that take a
n

. X X
string (yi) (yn) and outputs x + y.

Example

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

5/15

ADD and AC°

ADD is regular:

— there is a fini’g{e automata that take a Proof
H 1 n

string) e and outputs x + y. e Wilog. only — and A gates.
Example

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

5/15

ADD and AC°

ADD is regular:

— there is a fini’g{e automata that take a Proof
. 1
string ;) -+ y: and outputs x + y. e Wlog. only = and A gates.
e —-gate: —x is the least significant
Example bit of 1 + x.

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

5/15

ADD and AC°

ADD is regular:

— thereXis a fini’g{e automata that take a Proof
. 1
string ;) -+ y: and outputs x + y. e Wlog. only = and A gates.
e —-gate: —x is the least significant
Example bit of 1 + x.
e A-gate: A7 . x; is the most signifi-
Bre @ O Bt ‘
0 1 1 cant bit of x; - - - x, + 1.

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

5/15

ADD and AC°

ADD is regular:
— there is a finite automata that take a
n

. X X
string (yi) (yn) and outputs x + y.

Example

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

Proof

e Wilog. only = and A gates.

e —-gate: —x is the least significant
bit of 1 + x.

e A-gate: AT_; x; is the most signifi-
cant bit of xq - - - x, + 1.

e One ADD gate per layer, thanks to
double zeroes.

5/15

ADD and AC°

ADD is regular:

— there is a fini’g{e automata that take a Proof
. 1
string () -+ (),) and outputs x +y. e Wlog. only — and A gates.
e —-gate: —x is the least significant
Example bit of 1 + x.
(0) ’) (1) " ° /\—gate-: Ai_; xi is the most signifi-
0 (Do G cant bit of xg - - - x, + 1.

e One ADD gate per layer, thanks to
double zeroes.

o 01 0\ 11 o If we have a layer:

®)- G @ @@ e e e x
ADD is complete for AC® for a strong notion \ / ‘ \ ‘ /
of reduction (but not projections). A - A

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

5/15

ADD and AC°

ADD is regular:
— there is a finite automata that take a

. X X
string yi) ()/Z) and outputs x + y.

Example

©.O1r @1 ©.@)0

ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

Proof
e Wilog. only = and A gates.
e —-gate: —x is the least significant
bit of 1 + x.
e A-gate: AT_; x; is the most signifi-
cant bit of xq - - - x, + 1.
e One ADD gate per layer, thanks to
double zeroes.
e If we have a layer:
X1 X2 X3 Xa X5 X6
N/ I \I/
A - A
e Then we use:
00 x1 x 0 x3 0 x4 x5 X
+0 0 1 0 1 0 O 0 1

1 14

5/15

An algebraic toolbox

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).

6/15

A new object

Definition (Monoids)
A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that

is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).

— A generalization of groups.

6/15

A new object

Definition (Monoids)
A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).
— A generalization of groups.
— Usually denoted by the base set M.

6/15

A new object

Definition (Monoids)
A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).
— A generalization of groups.
— Usually denoted by the base set M.

Examples
e (N,+,0)

6/15

A new object

Definition (Monoids)
A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).
— A generalization of groups.
— Usually denoted by the base set M.

Examples

e (N,+,0)
e (N, x,1)

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).

— A generalization of groups.
— Usually denoted by the base set M.

Examples
e (N,+,0)
e (N, x,1)
e ({0,1},A,1)

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).

— A generalization of groups.
— Usually denoted by the base set M.

Examples
° (N,-i—,())
e (N, x,1)
e ({0,1},A,1)
e ({0,1},v,0)

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).

— A generalization of groups.
— Usually denoted by the base set M.

Examples

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).

— A generalization of groups.
— Usually denoted by the base set M.

Examples

6/15

A new object

Definition (Monoids) Definition (Morphisms)
A monoid is a triplet (M, -, 1) where: A morphism from M to N is a function
e Mis a set. w: M — N such that:
e - is an operation M x M — M that o u(ly) =1y
is associative ((x-y)-z = x-(y-2)). o u(x-my)=pulx) nply)
e 1is a neutral element of M (1-x =
x-1=x).

— A generalization of groups.
— Usually denoted by the base set M.

Examples

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1isa neutral element of M (1-x =
x-1=x).

Definition (Morphisms)
A morphism from M to N is a function
w: M — N such that:

o u(lm) =1y

o u(x my)=p(x) nply)

— A generalization of groups.
— Usually denoted by the base set M.

Examples

Examples

e x — 2x is a morphism from (N, +)
to itself.

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1isa neutral element of M (1-x =
x-1=x).

Definition (Morphisms)
A morphism from M to N is a function
w: M — N such that:

o u(lm) =1y

o u(x my)=p(x) nply)

— A generalization of groups.
— Usually denoted by the base set M.

Examples

Examples

e x — 2x is a morphism from (N, +)
to itself.

e The length function is a morphism
from * to (N, +).

6/15

A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1isa neutral element of M (1-x =
x-1=x).

Definition (Morphisms)
A morphism from M to N is a function
w: M — N such that:

o u(lm) =1y

o u(x my)=p(x) nply)

— A generalization of groups.
— Usually denoted by the base set M.

Examples

Examples

e x — 2x is a morphism from (N, +)
to itself.

e The length function is a morphism
from * to (N, +).

e The function ©* — ({0, 1}, V) that
maps a word to 1 if and only if it
has some letter a is a morphism.

6/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: £* — M and P C M
such that L = u~1(P).

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
e A=(Q,0,i,F) DFA for L.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof

e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof

e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof

e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

e 11:X* — M such that L = p~(P).

7/15

Links with regular languages

Definition

such that L = u~1(P).

A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M

— Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Proof

e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

e 11:X* — M such that L = p~(P).

e Construct A with:
e Q=M

7/15

Links with regular languages

Definition

such that L = u~1(P).

A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M

— Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Proof

e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

e 11:X* — M such that L = p~(P).

e Construct A with:
e Q=M
o 5u(x) = x- p(2)

7/15

Links with regular languages

Definition

such that L = u~1(P).

A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M

— Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Proof

e A=(Q,0,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e Let M the set of functions
Oy : @ — Q with the composition.
— it is finite.

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

e 11:X* — M such that L = p~(P).

e Construct A with:
e Q=M

o 6,(x) = x- u(a)
e =1

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
A=(Q,d,i,F) DFA for L.

e 0, is the extended transition function
when reading w.

e 11:X* — M such that L = p~(P).
e Construct A with:

) e Q=M
e lLet M the set of functions o 0,(x) = x - ()
Oy : @ — Q with the composition. i 1
— it is finite.
e F=P

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
e A=(Q,0,i,F) DFA for L.
e 0, is the extended transition function
when reading w.

e 11:X* — M such that L = p~(P).
e Construct A with:

. [) Q = M
e lLet M the set of functions o 600) = s (e
dw : @ — @ with the composition. . ,.a: i H
— it is finite. .
e F=P

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

o Invariant: 0, (i) = p(w).

7/15

Links with regular languages

Definition
A language L is recognized by a monoid M if there is a morphism p: ¥* — M and P C M
such that L = u~1(P).

— Membership in L can be decided by looking only at information contained in M.

Claim
A language L is regular if and only if it is recognized by a finite monoid.

Proof
e A=(Q,0,i,F) DFA for L.
e 0, is the extended transition function
when reading w.

e 11:X* — M such that L = p~(P).
e Construct A with:

. [) Q = M
e lLet M the set of functions o 600) = s (e
dw : @ — @ with the composition. . ,.a: i H
— it is finite. .
e F=P

o Let u:¥X* — M that maps w to 4.
— it is a morphism.

o Let P={f | f(i) € F}.
— recognizes L.

o Invariant: 0, (i) = p(w).

— This is the transition monoid of A. It makes more structure visible.
7/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L & xvy € L.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L & xvy € L.

— an equivalence relation.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L & xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L & xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

— We have to check that this is well defined:
the class C; - G, does not depend on the

choice of u and v.
8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and

Claim
If u~; v and v ~ v/, then uv ~; u'V'.

ve G, G -G is the class of uv.

— We have to check that this is well defined:
the class C; - G, does not depend on the
choice of u and v.

8/15

A canonical monoid Claim
If u~; v and v ~| V/, the ~ u'v.
We want to associates a distinguished ooy nv ey

monoid to every regular language.
yree guag Proof

e Let x,y such that xuvy € L.
e Equivalent to xu'vy € L by u ~ u'.
e Equivalent to xu'v'y € Lby v ~ v/

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

— We have to check that this is well defined:
the class C; - G, does not depend on the

choice of u and v.
8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Claim
If u~; v and v ~ v/, then uv ~; u'V'.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

Proof
e Let x,y such that xuvy € L.

e Equivalent to xu'vy € L by u ~ u'.

/!

e Equivalent to xu'v'y € Lby v ~ v/

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

Example
Consider Parity.

— We have to check that this is well defined:

the class C; - G, does not depend on the
choice of u and v.

8/15

A canonical monoid Claim

. . If u~; v and v ~_ v/, then uv ~; u'V'.
We want to associates a distinguished

monoid to every regular language.
yree guag Proof

e Let x,y such that xuvy € L.

e Equivalent to xu'vy € L by u ~ u'.
e Equivalent to xu'v'y € Lby v ~ v/

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

Example
- i/’; eq.uwalence relation. Consider Parity. Its syntactic relation has
—? eaning: we can replace.u .by v anywhere two classes:
without changing membership in L. e words with an even number of 1.
— e words with an odd number of 1.
Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

— We have to check that this is well defined:
the class C; - G, does not depend on the
choice of u and v.
8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Claim
If u~; v and v ~ v/, then uv ~; u'V'.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

Proof
e Let x,y such that xuvy € L.
e Equivalent to xu'vy € L by u ~ u'.

e Equivalent to xu'v'y € Lby v ~ v/

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

Example

Consider Parity. Its syntactic relation has
two classes:

e words with an even number of 1.

e words with an odd number of 1.
Its syntactic monoid is the group Z/2Z.

— We have to check that this is well defined:

the class C; - G, does not depend on the
choice of u and v.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Claim
If u~; v and v ~ v/, then uv ~; u'V'.

Definition

The syntactic relation of L is the relation

on X * defined by u ~ v iff for all x,y,
xuy € L& xvy € L.

Proof
e Let x,y such that xuvy € L.
e Equivalent to xu'vy € L by u ~ u'.

e Equivalent to xu'v'y € Lby v ~ v/

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

Example

Consider Parity. Its syntactic relation has
two classes:

e words with an even number of 1.

e words with an odd number of 1.
Its syntactic monoid is the group Z/2Z.

— We have to check that this is well defined:
the class C; - G, does not depend on the
choice of u and v.

Example
Consider the language of words with a 1.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Claim
If u~; v and v ~ v/, then uv ~; u'V'.

Definition
The syntactic relation of L is the relation
on X * defined by u ~ v iff for all x,y,

Proof
e Let x,y such that xuvy € L.
e Equivalent to xu'vy € L by u ~ u'.

e Equivalent to xu'v'y € Lby v ~ v/

xuy € L& xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and

Example

Consider Parity. Its syntactic relation has
two classes:

e words with an even number of 1.

e words with an odd number of 1.
Its syntactic monoid is the group Z/2Z.

ve G, G -G is the class of uv.

— We have to check that this is well defined:
the class C; - G, does not depend on the
choice of u and v.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

e words with a 1.

e words without a 1.

8/15

A canonical monoid

We want to associates a distinguished
monoid to every regular language.

Claim
If u~; v and v ~ v/, then uv ~; u'V'.

Definition
The syntactic relation of L is the relation
on X * defined by u ~ v iff for all x,y,

Proof
e Let x,y such that xuvy € L.
e Equivalent to xu'vy € L by u ~ u'.
e Equivalent to xu'v'y € Lby v ~ v/

xuy € L& xvy € L.

— an equivalence relation.
— Meaning: we can replace u by v anywhere
without changing membership in L.

Definition

The syntactic monoid M; of L is the
set of equivalence classes of ~; equiped
with: for G, G € My, and u € ¢; and
ve G, G -G is the class of uv.

Example

Consider Parity. Its syntactic relation has
two classes:

e words with an even number of 1.

e words with an odd number of 1.
Its syntactic monoid is the group Z/2Z.

— We have to check that this is well defined:
the class C; - G, does not depend on the
choice of u and v.

Example

Consider the language of words with a 1.
Its syntactic relation has two classes:

e words with a 1.

e words without a 1.
Its syntactic monoid is ({0, 1}, V).

8/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

*)ML is

finite and recognizes L.

Proof

A=(Q,4d,i,F) minimal DFA for L.

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

*)ML is

finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
0x(p) € F < 0x(q) € F for all x.

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

*)ML is

finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
0x(p) € F < 0x(q) € F for all x.
e We need: u~y viff §, =6,.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.
— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.
— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
e For x,y, assume xuy € L.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
e For x,y, assume xuy € L.
o Thus dx, (i) € F.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
e For x,y, assume xuy € L.
o Thus dx, (i) € F.
e Thus d,, (i) € F.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

o = if u~yv.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L. O == 1 ey
— satisifes p = q whenever e Let p € Q: by minimality, there
0x(p) € F = 9x(q) € F for all x. is x such that &,(i) = p.
o We need: u ~; v iff §, = 6,.
o = ifd,=19,.

For x, y, assume xuy € L.
Thus d,,y (i) € F.

Thus ., (i) € F.

Thus xvy € L.

Hence u ~; v.

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

o = if u~yv.
e Let p € Q: by minimality, there
is x such that d,(/) = p.
e For all y, we have
xuy € L& xvy € L.

9/15

Another view on the syntactic monoic

Claim
The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A =(Q,9,i,F) minimal DFA for L. o = ifun~yv.
— satisifes p = g whenever e Let p € Q: by minimality, there
ox(p) € F & 5x(q_) € F for all x. is x such that d,(/) = p.
o We need: v~y v iff §, =d,. e For all y, we have
o =:ifd, =0,. xuy € L < xvy € L.

For x,y, assume xuy € L. o Thus & =y cF
Thus by, (i) € F. + Ouy (P) w(P)

Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

o = if u~yv.
e Let p € Q: by minimality, there
is x such that d,(/) = p.
e For all y, we have
xuy € L& xvy € L.

e Thus, §,,(p) € F < 0, (p) € F.

e Thus,
dy(6u(p)) € F < 0,(dv(p)) € F.

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

o = if u~yv.
e Let p € Q: by minimality, there
is x such that d,(/) = p.
e For all y, we have
xuy € L& xvy € L.

e Thus, §,,(p) € F < 0, (p) € F.

e Thus,

dy(du(P)) € F = 0,(3u(p)) € F.

e By minimality, §,(p) = 0,(p).

9/15

Another view on the syntactic monoic

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

— M, is finite and recognizes L.

Proof
A=(Q,4d,i,F) minimal DFA for L.

— satisifes p = g whenever
dx(p) € F < (q) € F for all x.
e We need: u~y viff §, =6,.
o = ifd,=19,.
For x, y, assume xuy € L.
Thus d,,y (i) € F.
Thus ., (i) € F.
Thus xvy € L.
Hence u ~; v.

o = if u~yv.

e Thus, §,,(p) € F < 0, (p) € F.

Let p € Q: by minimality, there
is x such that d,(/) = p.

For all y, we have

xuy € L& xvy € L.

e Thus,

dy(du(P)) € F = 0,(3u(p)) € F.

e By minimality, §,(p) = 0,(p).
e Hence, §, = 6,.

— Also gives an algorithm to compute M;.

9/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.

10/15

An example
The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.
— We can only describe the multiplication by §, and dp.

10/15

An example
The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

ab 1 2 3 4
a a
oo
b b

10/15

An example
The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

ab 1 2 3
2 3

a a 5. |1
oo

b b

h ok

@

4
4

10/15

An example
The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

ab 1 2 3 4
a a 5. |1 2 3 4
b b

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.

— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton

9]
o

!
O

%

%‘U—@
@:) -

Syntactic monoid

1 2 3 4
6. |1 2 3 4
6, |2 4 2 4
opb |3 3 4 4

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

S~ W AN
A BN WW
LT T S S

)
o
S>3
SR
B OWN R

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

)
o
S>3
SR
W s WN ==
AP WD NN
W h BN WW
R

6ab

%ab

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.

— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton

o

®

a
a

b

a

o

b
o U8
.

Syntactic monoid

1 2 3 4
o |1 2 3 4
6, |2 4 2 4
opb |3 3 4 4
0.0 |4 4 4 4
0|3 4 3 4
0pa |2 2 4 4

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

5/3 . 6b = 533

6ab

)
o
S>3
SR
N WL WN H=

N BB WSDNDN
WA DN WW
L i e]

@

]
>

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

6ab

)
o
S>3
SR
N WL WN H=

N BB WSDNDN
AW D2DDNWW
L i e]

aaa
daa
@ 0
aaa

5/3 . 6b = 533
6aa : 6a

Il
>,

aa

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid
a,b (5/3 . 6b = 533
2 2 65 6aa : 6a = 6aa
5aa ' 5b = 5aa

6ab

)
o
S>3
SR
N WL WN H=

N BB WSDNDN
AW D2DDNWW
L i e]

@

%aab
aab @

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.

— We can only describe the multiplication by §, and dp.
Computation of the syntactic monoid of (a + b)*(aa + bb)(a+ b)*.

Minimal automaton

aba

obe N
& -

Syntactic monoid

6ab

N WL WN H=

N AW NN

PO BN OWW

L R

b - b
6aa) 6a
5aa : 5b
5ab : Ja

S
v o o

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid
a,b 1 2 3 4 6p-0p = Oa
a a 5. |1 2 3 4 b 05 = O
0a |2 4 2 4 _
— a b ’ a 022" 0p = O
8@ 5 |3 3 4 4 Sop 6. = 6.
b b 0aa | 4 4 4 4 0ab-0p = Oaa
0|3 4 3 4
0pa |2 2 4 4

@\abb
abb @

abb
@ abb >

ol

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product
of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

a,b 1 2 3 4 6p-0p = Oa
a a 0. |1 2 3 4 an0s = 0o

0, |2 4 2 4 _

— a b 8 a b0z Op = 0
@ 5, |3 3 4 4 Sop 6. = 6.
b b 633 4 4 4 4 5ab : 5b = 533
6ab 3 .4 3 4 5ba . 63 = 533
0pa |2 2 4 4

@/c%

@

10/15

An example

The syntactic monoid is generated by d, and d,: every element can be obtained are a product

of these two.
— We can only describe the multiplication by §, and dp.

Computation of the syntactic monoid of (a + b)*(aa + bb)(a + b)*.

Minimal automaton Syntactic monoid

6ab

o)
25
o
o o5
ST o >
x T L O
N WS WN R

N BB WSDNDN
AW D2DDNWW
L i e]

Op - Op

6aa)
5aa)
5ab :
5ab .
5ba :
6ba .

K NN INGINING
1Y [Y) Y 1Y 1Y

10/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof
e Take the sequence of x' for any i.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

o Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xP.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

— It is unique: if x' and x/ are idempotents
then x' = x¥ = xJ.

11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

— It is unique: if x' and x/ are idempotents
then x' = x¥ = xJ.

— We denote it x“. 11/15

|dempotents

The case p = 1 is particularly interesting.

Definition
An idempotent is an element x € M such Definition
that x? = x. A monoid M is aperiodic if for every x €
— Capture cycles in an automaton. M, we have
o . 1_
We can find idempotents easily: X = x¥

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

— It is unique: if x' and x/ are idempotents
then x' = x¥ = xJ.

— We denote it x“. 11/15

|dempotents

The case p = 1 is particularly interesting.

Definition
An idempotent is an element x € M such Definition
that x? = x. A monoid M is aperiodic if for every x €
— Capture cycles in an automaton. M, we have
o . 1_
We can find idempotents easily: X = x¥

- — Intuition: M cannot count.
Claim

For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

— It is unique: if x' and x/ are idempotents
then x' = x¥ = xJ.

— We denote it x“. 11/15

|dempotents

The case p = 1 is particularly interesting.

Definition
An idempotent is an element x € M such Definition
that x? = x. A monoid M is aperiodic if for every x €
— Capture cycles in an automaton. M, we have
o . 1_
We can find idempotents easily: X = x¥

— Intuition: M cannot count.

Claim — A language L is aperiodic if M| is.

For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

— It is unique: if x' and x/ are idempotents
then x' = x¥ = xJ.

— We denote it x“. 11/15

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

The case p = 1 is particularly interesting.

— Capture cycles in an automaton.

We can find idempotents easily:

Definition
A monoid M is aperiodic if for every x €
M, we have

Xw+1 — xv

Claim
For every x € M, there is an i € N such
that x' is idempotent.

— Intuition: M cannot count.
— A language L is aperiodic if M| is.

Proof

e Take the sequence of x' for any i.
e Pigeonhole: there is some x' =
xHP,

For all j > i, x/ = xI*P.

For j = kp, xkP = xkptp.

x*P is idempotent.

Example

Parity and Z/27Z are not aperiodic: 1 =
0 and 1¢*! =1.

— It is unique: if x' and x/ are idempotents

then x' = x¥ = xJ.
— We denote it x“.

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.
e Pigeonhole: there is some x' =
xHP,

For all j > i, x/ = xI*P.

For j = kp, xkP = xkptp.

x*P is idempotent.

— It is unique: if x' and x/ are idempotents

then x' = x¥ = xJ.
— We denote it x“.

The case p = 1 is particularly interesting.

Definition
A monoid M is aperiodic if for every x €
M, we have

Xw+1 — xv

— Intuition: M cannot count.
— A language L is aperiodic if M| is.

Example

Parity and Z/27Z are not aperiodic: 1 =
0 and 1¢*! =1.

— For any m € N, Mod,, is also not
aperiodic.

|dempotents

Definition
An idempotent is an element x € M such
that x? = x.

— Capture cycles in an automaton.

We can find idempotents easily:

Claim
For every x € M, there is an i € N such
that x' is idempotent.

Proof

e Take the sequence of x' for any i.

e Pigeonhole: there is some x' =
xHP,

o Forall j> i, x/ =x/*tP.

o For j = kp, x'P = xkP+P,

o x*? is idempotent.

The case p = 1 is particularly interesting.

Definition
A monoid M is aperiodic if for every x €
M, we have

Xw+1 — xv

— Intuition: M cannot count.
— A language L is aperiodic if M| is.

Example

Parity and Z/27Z are not aperiodic: 1 =
0 and 1¢*! =1.

— For any m € N, Mod,, is also not
aperiodic.

— It is unique: if x' and x/ are idempotents
then x' = x¥ = xJ.
— We denote it x“.

Example

Y*aY* and ({0,1},V) are aperiodic:
09 =0v"' =0and 1¥ = 1! = 1.

11/15

The regular languages of ACO

Star-free languages

Claim
AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Claim

AC® languages are close under concate-
nation.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

12/15

Star-free |anguages The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

12/15

The problem is the Kleene star: Parity is the

Star-free languages !
Kleene star of an AC" language.

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

— Complement needed to have infinite
languages.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

Examples
o X * =

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

Examples
o Y* =(c.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

Examples
o Y* =(c.

e af =

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

Examples

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

Examples
o Y* =(c.
PY a* — (@Cb@C)C.
o (ab)* = (b0 + 0°a + 0°aadc +
@cbb(z)c @

12/15

Star-free languages

Claim

AC® languages are close under Boolean
operations (union, intersection, comple-
ment).

The problem is the Kleene star: Parity is the
Kleene star of an AC® language.

Proof
e A V-gate for union.
e A A-gate for intersection.
e A —-gate for complement.

Definition
A language is star-free if it is expressible
with a regular expression with only:

e f.eand aforac ¥,

e union,

e complement,

e concatenation.

Claim

AC® languages are close under concate-
nation.

— Complement needed to have infinite
languages.

Proof
e Circuits ¢; and G for L1 and Ls.
e Guess the split position.
e [;-Ly computed by:
Viio Gil1,] A Gli + 1, n].
2(n+ 1) circuits of polynomial size.

b(Z)C. + 0ca + (caaldc +

star-free C AC°

12/15

An algebraic characterization

For the converse, we are stuck... we need algebral

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.
o My={1}.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.
o My = {1}
e M. = ({0,1},V).

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)

Induction on the expression.
My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)

Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with

x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.
My = {1}.
M. = ({0,1}, V).
For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).
e Forany L, ~ =~c thus M;c = M,.

e For the last two case, let Ly and L,
be aperiodic.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.
My = {1}.
M. = ({0,1}, V).
For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).
e Forany L, ~ =~c thus M;c = M,.

e For the last two case, let Ly and L,
be aperiodic.

e For x € ¥*, let n such that
X"~ x"and x" ~p, xTL

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=) . e union: for any u, v
e [nduction on the expression. o ux"velulL
o My={1}.
e M. = ({0,1},V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).
e Forany L, ~ =~c thus M;c = M,.

e For the last two case, let Ly and L,
be aperiodic.

e For x € ¥*, let n such that
X"~ x"and x" ~p, xTL

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=) . e union: for any u, v
e Induction on the expression. o ux"veliUl
o My ={1}. < ux"v e Ly or ux"v e Ly
o M. =({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).
e Forany L, ~ =~c thus M;c = M,.

e For the last two case, let Ly and L,
be aperiodic.

e For x € ¥*, let n such that
X"~ x"and x" ~p, xTL

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)

e Induction on the expression.

o My={1}.

e M. = ({0,1},V).

o Forae X, M,={0,1,2} with
x -y =min(x +y,2).

e Forany L, ~ =~c thus M;c = M,.

e For the last two case, let Ly and L,
be aperiodic.

e For x € X*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v
o ux"veliUl
< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v

o ux"veliUl
< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v

o ux"veliUl
< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
® X NL1UL2X+'

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)

e Induction on the expression.

o My={1}.

e M. = ({0,1},V).

o Forae X, M,={0,1,2} with
x -y =min(x +y,2).

e Forany L, ~ =~c thus M;c = M,.

e For the last two case, let Ly and L,
be aperiodic.

e For x € X*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v
o ux"veliUl

< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
X NL1UL2X + .

e Concatenation: for any u, v
o ux®"v e Lq1L,

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v
o ux"veliUl

< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
X NL1UL2X + .

e Concatenation: for any u, v
o ux®"v e Lq1L,
e = ux'v' € Ly and v/ X)v € L, with

i>norj>n.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v
o ux"veliUl

< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
X NL1UL2X + .

e Concatenation: for any u, v
o ux®"v e Lq1L,
e = ux'v' € Ly and v/ X)v € L, with

i>norj>n.
So uxTty’ € Ly or vxItly € Ly.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

e union: for any u, v
o ux"veliUl

< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
X NL1UL2X + .

e Concatenation: for any u, v
o ux®"v e Lq1L,
e = ux'v' € Ly and v/ X)v € L, with

i>norj>n.

e So uxtly € L1 or v/xitlv € L.
o Thus ux?"tlv € L1 L,.
e The equivalence is proved similarly.

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

union: for any u, v

o ux"veliUl

< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
X NL1UL2X + .

e Concatenation: for any u, v
o ux®"v e Lq1L,
e = ux'v' € Ly and v/ X)v € L, with

i>norj>n.
So uxt1y € Ly or vVxITly € L,.
Thus ux®™tlyv € L;L,.

The equivalence is proved similarly.

X2n 2n+1.

~LiL, X

13/15

An algebraic characterization

For the converse, we are stuck... we need algebral

Theorem (Schiitzenberger)

The star-free languages are precisely the aperiodic languages.

Proof (=)
e Induction on the expression.

My = {1}.

M. = ({0,1}, V).

For ae X, M, = {0, 1,2} with
x -y =min(x +y,2).

For any L, ~;=~/c thus M;c = M,.

For the last two case, let Ly and L,
be aperiodic.

For x € ¥*, let n such that

X"~ x"and x" ~p, xTL

union: for any u, v

o ux"veliUl

< ux"v € Ly or ux"v € L,
< ux"tyv e L or ux"tlv € L,
s ux"yv e UL

n n+1
X NL1UL2X + .

e Concatenation: for any u, v
o ux®"v e Lq1L,
e = ux'v' € Ly and v/ X)v € L, with

i>norj>n.
So uxt1y € Ly or vVxITly € L,.
Thus ux®™tlyv € L;L,.

The equivalence is proved similarly.

X2n 2n+1.

~LiL, X

< Much more complicated: need a structure theory of monoids (Green's theory).

13/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.
e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
xwta = x@,

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
xwta = x@,

e We want to reduce Mod, to L.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
xwta = x@,

e We want to reduce Mod, to L.

e Mod, ¢ AC® = L ¢ AC°.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
Xw+q — x¥.

e We want to reduce Mod, to L.

e Mod, ¢ AC® = L ¢ AC°.

e We prove the case g = 2.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof o Let u,v st (wlog.) ux“v € L and
e [a regular language with a neutral ux“tly ¢ L.

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
Xw+q — x¥.

e We want to reduce Mod, to L.

e Mod, ¢ AC® = L ¢ AC°.

e We prove the case g = 2.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof o Let u,v st (wlog.) ux“v € L and
e [a regular language with a neutral ux“tly ¢ L.
letter that is not star-free. o Assume that x* and x**! have same
e Itiis not aperiodic: there is x € My st size (thanks to the neutral letter).
Xw+l 75 XY
e Let g the smallest integer st
xWtq — xw.

e We want to reduce Mod, to L.
e Mod, ¢ AC® = L ¢ AC°.
e We prove the case g = 2.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof o Let u,v st (wlog.) ux“v € L and
e [a regular language with a neutral ux“tly ¢ L.
letter that is not star-free. o Assume that x* and x**! have same
o It islnot aperiodic: there is x € M, st size (thanks to the neutral letter).
XL X e Let f that send 0 to x* and 1 to
e Let g the smallest integer st WL
xwta = x@, ,

e We want to reduce Mod, to L.
e Mod, ¢ AC® = L ¢ AC°.
e We prove the case g = 2.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof o Let u,v st (wlog.) ux“v € L and
e [a regular language with a neutral ux“tly ¢ L.
letter that is not star-free. o Assume that x* and x**! have same
o It isant aperiodic: there is x € My st size (thanks to the neutral letter).
XA X, e Let f that send 0 to x* and 1 to
e Let g the smallest integer st x@tL:
XU = X, e The reduction send w to

e We want to reduce Mod, to L. uf (wp) - - - F(wp)v.
e Mod, ¢ AC® = L ¢ AC°.
e We prove the case g = 2.

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof o Let u,v st (wlog.) ux“v € L and

e [a regular language with a neutral ux“tly ¢ L.

letter that is not star-free. o Assume that x* and x**! have same
o It isant aperiodic: there is x € My st size (thanks to the neutral letter).

XL £ X e Let f that send 0 to x* and 1 to
e Let g the smallest integer st x@tL:

XTa = x¥. e The reduction send w to
e We want to reduce Mod, to L. uf(wo) - - - F(wp)v.

0 0 . L \Wn)

e Modg ¢ AC" = L ¢ AC". e This word is equivalent to
e We prove the case g = 2. uxwHParity (w)

14/15

The theorem
A small technicality:

Definition
A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without
affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof o Let u,v st (wlog.) ux“v € L and

e [a regular language with a neutral ux“tly ¢ L.

letter that is not star-free. o Assume that x* and x**! have same
o It isant aperiodic: there is x € My st size (thanks to the neutral letter).

XL £ X e Let f that send 0 to x* and 1 to
e Let g the smallest integer st x@tL:

XTa = x¥. e The reduction send w to
e We want to reduce Mod, to L. uf(wo) - - - F(wp)v.

0 0 . L \Wn)

e Modg ¢ AC" = L ¢ AC". e This word is equivalent to
e We prove the case g = 2. uxwHParity (w)

e This is in L iff Parity(w) = 0.

14/15

The theorem

A small technicality:

Definition

affecting membership in L.

A language L has a neutral letter ¢ if ¢ can be added and removed anywhere without

Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [a regular language with a neutral

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
Xw+q — x¥.

e We want to reduce Mod, to L.

e Mod, ¢ AC® = L ¢ AC°.

e We prove the case g = 2.

Let u, v st (wlog.) ux“v € L and
ux“tly ¢ L.

Assume that x¥ and x¥*1 have same
size (thanks to the neutral letter).
Let f that send 0 to x“ and 1 to
Xw+1;

The reduction send w to

uf (wp) -« - F(wp)v.

This word is equivalent to
uxw+Parityc(w)v_

This is in L iff Parity(w) = 0.

Without a neutral letter, (aa)* is not star-free but is in ACC.

14/15

Going further

We can identify the regular languages in a few other classes.

15/15

Going further

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d;, /;) with d; € {—,«} and /; € X.

The turle starts at position 1 and, for each instruction, moves on the direction d; until it
reaches a letter /;. It fails if it does not find the letter at any point.

15/15

Going further

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d;, /;) with d; € {—,«} and /; € X.

The turle starts at position 1 and, for each instruction, moves on the direction d; until it
reaches a letter /;. It fails if it does not find the letter at any point.

Theorem
The regular languages with a neutral letter of WLAC? are precisely the Boolean combination
of turtle programs.

15/15

Going further

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d;, /;) with d; € {—,«} and /; € X.

The turle starts at position 1 and, for each instruction, moves on the direction d; until it
reaches a letter /;. It fails if it does not find the letter at any point.

Theorem
The regular languages with a neutral letter of WLAC? are precisely the Boolean combination
of turtle programs.

Definition
A subword language is a language L for which there exists u such that L is the set of words
that have v as a subword.

15/15

Going further

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d;, /;) with d; € {—,«} and /; € X.

The turle starts at position 1 and, for each instruction, moves on the direction d; until it
reaches a letter /;. It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of WLAC? are precisely the Boolean combination
of turtle programs.

Definition
A subword language is a language L for which there exists u such that L is the set of words
that have v as a subword.

Theorem
The regular languages with a neutral letter that can be computed by k-DNFs with constant
k are precisely the Boolean combination of subword languages.

15/15

Going further

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d;, /;) with d; € {—,«} and /; € X.

The turle starts at position 1 and, for each instruction, moves on the direction d; until it
reaches a letter /;. It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of WLAC? are precisely the Boolean combination
of turtle programs.

Definition
A subword language is a language L for which there exists u such that L is the set of words
that have v as a subword.

Theorem
The regular languages with a neutral letter that can be computed by k-DNFs with constant
k are precisely the Boolean combination of subword languages.

— Can be extended to depth-3 but not depth-4 so far.
15/15

