Boolean circuits and efficient addition

Corentin Barloy Michael Walter Thomas Zeume

How can we measure the ressources used during a computation?

How can we measure the ressources used during a computation?

- Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
- Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
- Heavily depends on interactions between the two (e.g. the compilation procedure).

How can we measure the ressources used during a computation?

- Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
- Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
- Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and standardized units.

How can we measure the ressources used during a computation?

- Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
- Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
- Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and standardized units.

Sequential	Parallel

How can we measure the ressources used during a computation?

- Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
- Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
- Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and standardized units.

Sequential

- Turing Machines
- Infinite tape
- Each cell contains a single bit
- The head moves one position at a time according to simple control rules

Parallel

How can we measure the ressources used during a computation?

- Heavily depends on the hardware (NASA supercomputer, phone, a student, ...)
- Heavily depends on the language (Python, C++, Makefiles, assembly, ...)
- Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and standardized units.

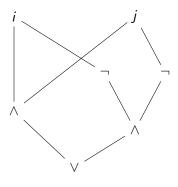
Sequential

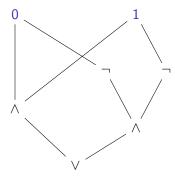
- Turing Machines
- Infinite tape
- Each cell contains a single bit
- The head moves one position at a time according to simple control rules

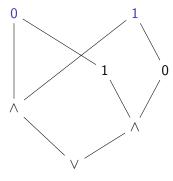
Parallel

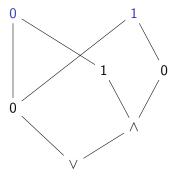
- Boolean Circuits
- Lots of processors
- Each of them computes a single bit, using a Boolean operation
- Either uses inputs bits or result from other processors
- Connections are fixed

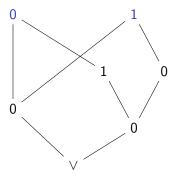
Boolean circuits

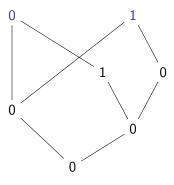


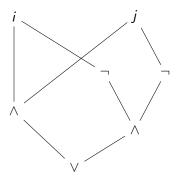


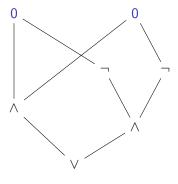


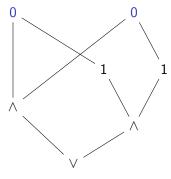


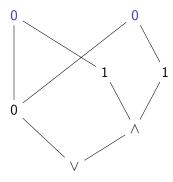


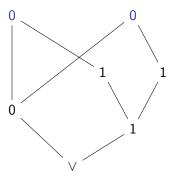


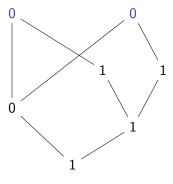


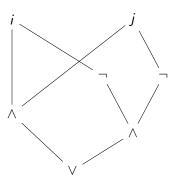




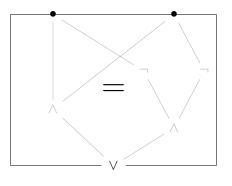




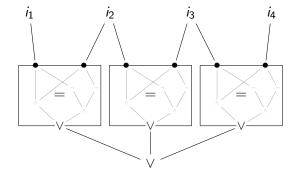


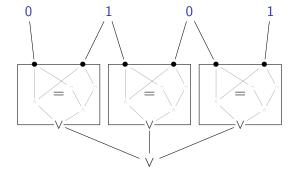


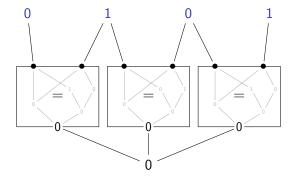
outputs $1 \Leftrightarrow i = j$

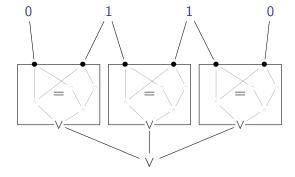


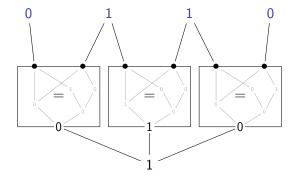
outputs $1 \Leftrightarrow i = j$

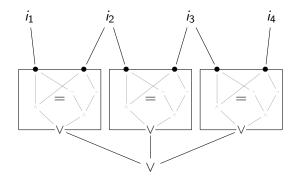




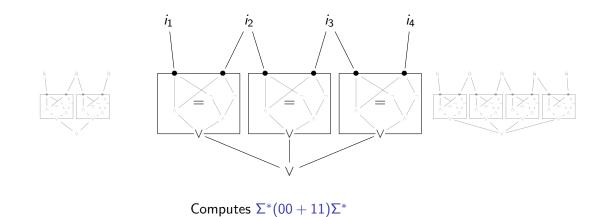








Computes $\Sigma^*(00+11)\Sigma^* \cap \Sigma^4$

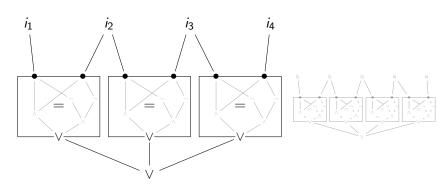


$$\label{eq:size} \begin{aligned} \text{size}(n) &= \text{number of gates} & \text{wire}(n) &= \text{number of wires} \\ \text{depth}(n) &= \text{maximal length of a path} \\ \text{fan-in}(n) &= \text{maximal in-degree of a gate} \end{aligned}$$



Computes $\Sigma^*(00+11)\Sigma^*$

$$\begin{aligned} & \text{size}(n) = \text{number of gates} & \text{wire}(n) = \text{number of wires} \\ & \text{depth}(n) = \text{maximal length of a path} \\ & \text{fan-in}(n) = \text{maximal in-degree of a gate} \end{aligned}$$



Computes $\Sigma^*(00+11)\Sigma^*$

$$size(n) = 5 \cdot (n-1) + 1$$
$$wire(n) = 9 \cdot (n-1)$$

$$depth(n) = 4$$

$$fan-in(n) = n-1$$

Definition (Syntax)

A circuit C over the variables $X = \{x_1, \dots, x_n\}$ is a triple (G, λ, g_o) with

- ullet a directed acyclic graph G = (V, E)
- a labelling of nodes

$$\lambda: V \to \{0, 1, \land, \lor, \lnot\} \cup X$$

ullet a distinguished ouput node g_o

Definition (Syntax)

A circuit C over the variables $X = \{x_1, \dots, x_n\}$ is a triple (G, λ, g_o) with

- a directed acyclic graph G = (V, E)
- a labelling of nodes

$$\lambda: V \to \{0, 1, \land, \lor, \lnot\} \cup X$$

ullet a distinguished ouput node g_o

Nodes are called gates and edges wires.

Definition (Syntax)

A circuit C over the variables $X = \{x_1, \dots, x_n\}$ is a triple (G, λ, g_o) with

- a directed acyclic graph G = (V, E)
- a labelling of nodes
 - $\lambda: V \to \{0, 1, \land, \lor, \neg\} \cup X$
- a distinguished ouput node g_o

Nodes are called gates and edges wires.

Definition (Ressources)

- \bullet size \rightarrow number of gates
- wires → number of wires
- depth \rightarrow maximal length of a path (\approx execution time)
- ullet fan-in o maximal indegree of a gate

Definition (Syntax)

A circuit C over the variables $X = \{x_1, \dots, x_n\}$ is a triple (G, λ, g_o) with

- a directed acyclic graph G = (V, E)
- a labelling of nodes
 - $\lambda: V \to \{0, 1, \land, \lor, \neg\} \cup X$
- ullet a distinguished ouput node g_o

Nodes are called gates and edges wires.

Definition (Ressources)

- \bullet size \rightarrow number of gates
- wires → number of wires
- depth → maximal length of a path (≈ execution time)
- ullet fan-in o maximal indegree of a gate

Gates labelled by 0 or 1 must have fan-in 0. Gates labelled by \neg must have fan-in 1.

Definition (Syntax)

A circuit C over the variables $X = \{x_1, \dots, x_n\}$ is a triple (G, λ, g_o) with

- a directed acyclic graph G = (V, E)
- a labelling of nodes

 $\lambda: V \to \{0, 1, \land, \lor, \neg\} \cup X$

ullet a distinguished ouput node g_o

Nodes are called gates and edges wires.

Definition (Ressources)

- \bullet size \rightarrow number of gates
- wires → number of wires
- $\bullet \ \ \, \mathsf{depth} \to \mathsf{maximal} \ \, \mathsf{length} \ \, \mathsf{of} \ \, \mathsf{a} \ \, \mathsf{path} \\ \big(\! \approx \mathsf{execution} \ \, \mathsf{time} \, \, \big)$
- ullet fan-in o maximal indegree of a gate

Gates labelled by 0 or 1 must have fan-in 0. Gates labelled by \neg must have fan-in 1.

Definition (Semantic)

The value $v_{\alpha}(g)$ of gate g under an assigment $\alpha: X \to \{0,1\}$ is defined inductively by:

- $\lambda(g) \in \{0,1\}$: $\lambda(g)$
- $\lambda(g) = x \text{ for } x \in V$: $\alpha(g)$
- $\lambda(g) = \neg$: 1 iff $v_{\alpha}(g') = 0$ for the unique g' with $(g',g) \in E$
- $\lambda(g) = \wedge$: 1 iff $v_{\alpha}(g') = 1$ for all g' with $(g',g) \in E$
- $\lambda(g) = \forall$: 1 iff $v_{\alpha}(g') = 1$ for some g' with $(g',g) \in E$

Definition (Syntax)

A circuit C over the variables $X = \{x_1, \dots, x_n\}$ is a triple (G, λ, g_o) with

- a directed acyclic graph G = (V, E)
- a labelling of nodes

 $\lambda: V \to \{0, 1, \land, \lor, \neg\} \cup X$

ullet a distinguished ouput node g_o

Nodes are called gates and edges wires.

Definition (Ressources)

- \bullet size \rightarrow number of gates
- wires → number of wires
- depth \rightarrow maximal length of a path (\approx execution time)
- ullet fan-in o maximal indegree of a gate

Gates labelled by 0 or 1 must have fan-in 0. Gates labelled by \neg must have fan-in 1.

Definition (Semantic)

The value $v_{\alpha}(g)$ of gate g under an assigment $\alpha: X \to \{0,1\}$ is defined inductively by:

- $\lambda(g) \in \{0,1\}$: $\lambda(g)$
- $\lambda(g) = x \text{ for } x \in V$: $\alpha(g)$
- $\lambda(g) = \neg$: 1 iff $v_{\alpha}(g') = 0$ for the unique g' with $(g',g) \in E$
- $\lambda(g) = \wedge$: 1 iff $\nu_{\alpha}(g') = 1$ for all g' with $(g',g) \in E$
- $\lambda(g) = \forall$: 1 iff $v_{\alpha}(g') = 1$ for some g' with $(g',g) \in E$

The ouput of the circuit is $v_{\alpha}(g_o)$. The circuit computes a function $f_C: \{0,1\}^n \to \{0,1\}$ defined by $f(\alpha) = v_{\alpha}(g_o)$.

Each circuit computes only a function of a fixed set of variables

 \rightarrow cannot consider complexity

Each circuit computes only a function of a fixed set of variables

→ cannot consider complexity

Definition (Families)

A circuit family is a collection $C = (C_n)_{n \ge 0}$ of circuits, with C_n over a variables set of size n.

Each circuit computes only a function of a fixed set of variables

→ cannot consider complexity

Definition (Families)

A circuit family is a collection $C = (C_n)_{n \ge 0}$ of circuits, with C_n over a variables set of size n.

By convention, we usually refer to "circuit families" simply by "circuits".

Each circuit computes only a function of a fixed set of variables

→ cannot consider complexity

Definition (Families)

A circuit family is a collection $C = (C_n)_{n\geq 0}$ of circuits, with C_n over a variables set of size n.

By convention, we usually refer to "circuit families" simply by "circuits".

Definition

Each circuit C_n defines a language $L(C_n)$, the set of words w such that $f_{C_n}(w) = 1$. A circuit family C defines a language

$$L(C) = \bigcup_n L(C_n).$$

Each circuit computes only a function of a fixed set of variables

→ cannot consider complexity

Definition (Families)

A circuit family is a collection $C = (C_n)_{n\geq 0}$ of circuits, with C_n over a variables set of size n.

By convention, we usually refer to "circuit families" simply by "circuits".

Definition

Each circuit C_n defines a language $L(C_n)$, the set of words w such that $f_{C_n}(w) = 1$. A circuit family $\mathcal C$ defines a language

$$L(C) = \bigcup_n L(C_n).$$

No connections required between the C_n .

Each circuit computes only a function of a fixed set of variables

→ cannot consider complexity

Definition (Families)

A circuit family is a collection $C = (C_n)_{n\geq 0}$ of circuits, with C_n over a variables set of size n.

By convention, we usually refer to "circuit families" simply by "circuits".

Definition

Each circuit C_n defines a language $L(C_n)$, the set of words w such that $f_{C_n}(w) = 1$. A circuit family $\mathcal C$ defines a language

$$L(C) = \bigcup_n L(C_n).$$

No connections required between the C_n .

Example

Denote by Acc_n the circuit with n inputs that always accepts (one "1" gate and no wires). Similarly, define Rej_n that always rejects.

Consider the family C:

- $C_n = Acc_n$ if the n^{th} TM (in some order) always halts
- $C_n = \text{Rej}_n$ otherwise

Then L(C) is undecidable but all circuits are trivial.

Each circuit computes only a function of a fixed set of variables

→ cannot consider complexity

Definition (Families)

A circuit family is a collection $C = (C_n)_{n \ge 0}$ of circuits, with C_n over a variables set of size n.

By convention, we usually refer to "circuit families" simply by "circuits".

Definition

Each circuit C_n defines a language $L(C_n)$, the set of words w such that $f_{C_n}(w) = 1$. A circuit family C defines a language

$$L(C) = \bigcup_n L(C_n).$$

No connections required between the C_n .

Example

Denote by Acc_n the circuit with n inputs that always accepts (one "1" gate and no wires). Similarly, define Rej_n that always rejects.

Consider the family C:

- $C_n = Acc_n$ if the n^{th} TM (in some order) always halts
- $C_n = \text{Rej}_n$ otherwise

Then L(C) is undecidable but all circuits are trivial.

Can be avoided with uniformity: a procedure to compute the n^{th} circuit in the family.

- \rightarrow Not here
- → See the lectures on "Complexity Theory"

Links with Turing Machines

Definition (advice)

A Turing machine with advice M is a TM with two inputs x and y, and an advice function $a: \mathbb{N} \to \{0,1\}^*$. It accepts a word x if M accepts (x,a(|x|)).

Definition (advice)

A Turing machine with advice M is a TM with two inputs x and y, and an advice function $a: \mathbb{N} \to \{0,1\}^*$. It accepts a word x if M accepts (x,a(|x|)).

Definition (P/poly)

The complexity class P/poly is the class of languages accepted by a TM running in polynomial time with a polynomial size advice.

 \rightarrow A non-uniform version of P.

Definition (advice)

A Turing machine with advice M is a TM with two inputs x and y, and an advice function $a: \mathbb{N} \to \{0,1\}^*$. It accepts a word x if M accepts (x,a(|x|)).

Definition (P/poly)

The complexity class P/poly is the class of languages accepted by a TM running in polynomial time with a polynomial size advice.

 \rightarrow A non-uniform version of P.

Theorem

L is in P/poly

L is computable by a poly-size circuit

Definition (advice)

A Turing machine with advice M is a TM with two inputs x and y, and an advice function $a: \mathbb{N} \to \{0,1\}^*$. It accepts a word x if M accepts (x,a(|x|)).

Definition (P/poly)

The complexity class P/poly is the class of languages accepted by a TM running in polynomial time with a polynomial size advice.

 \rightarrow A non-uniform version of P.

Theorem

L is in P/poly

L is computable by a poly-size circuit

Proof (⇐)

- Evaluating a poly-size circuit can be done in poly time.
- The circuit is the advice.

Definition (advice)

A Turing machine with advice M is a TM with two inputs x and y, and an advice function $a: \mathbb{N} \to \{0,1\}^*$.

It accepts a word x if M accepts (x, a(|x|)).

Definition (P/poly)

The complexity class P/poly is the class of languages accepted by a TM running in polynomial time with a polynomial size advice.

 \rightarrow A non-uniform version of P.

Theorem

L is in P/poly

L is computable by a poly-size circuit

Proof (⇐)

- Evaluating a poly-size circuit can be done in poly time.
- The circuit is the advice.

For the converse, we admit the following for the moment.

Lemma

There is a poly-size circuit for every language in P.

Definition (advice)

A Turing machine with advice M is a TM with two inputs x and y, and an advice function $a: \mathbb{N} \to \{0,1\}^*$.

It accepts a word x if M accepts (x, a(|x|)).

Definition (P/poly)

The complexity class P/poly is the class of languages accepted by a TM running in polynomial time with a polynomial size advice.

 \rightarrow A non-uniform version of P.

Theorem

L is in P/poly

L is computable by a poly-size circuit

Proof (⇐)

- Evaluating a poly-size circuit can be done in poly time.
- The circuit is the advice.

For the converse, we admit the following for the moment.

Lemma

There is a poly-size circuit for every language in P.

Proof (\Rightarrow)

- Take *M* a P/poly TM.
- Construct D_n the circuit for M with inputs x and y of sizes n and |a(n)|, by the lemma.
- Take C_n to be D_n with the inputs in y replaced by a(n).

Lemma There is a poly-size circuit for every language in P. Proof

Lemma There is a poly-size circuit for every language in P. **Proof**• Let M a 1-tape TM in time t(n).

There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.

There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - ightarrow c_i constant size string.

There is a poly-size circuit for every language in P.

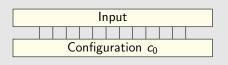
- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - $\rightarrow c_i$ constant size string.
- The content of a cell c at time i only depends on the last time ji the head was in c, which only depends on i.

There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - $\rightarrow c_i$ constant size string.
- The content of a cell c at time i only depends on the last time j_i the head was in c, which only depends on i.
- We can compute c_{i+1} from c_i, the input and c_{ji}.
 - \rightarrow Constant size circuit.

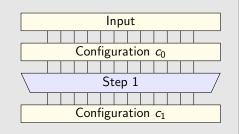
There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - \rightarrow c_i constant size string.
- The content of a cell c at time i only depends on the last time j_i the head was in c, which only depends on i.
- We can compute c_{i+1} from c_i, the input and c_{ji}.
 - \rightarrow Constant size circuit.



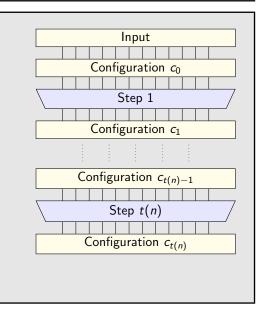
There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - $\rightarrow c_i$ constant size string.
- The content of a cell c at time i only depends on the last time ji the head was in c, which only depends on i.
- We can compute c_{i+1} from c_i, the input and c_{ji}.
 - $\rightarrow \mbox{Constant size circuit}.$



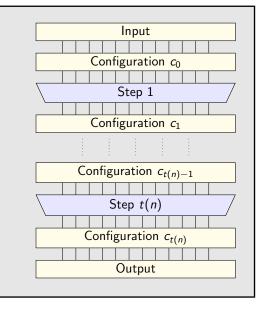
There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - \rightarrow c_i constant size string.
- The content of a cell c at time i only depends on the last time ji the head was in c, which only depends on i.
- We can compute c_{i+1} from c_i, the input and c_{ji}.
 - \rightarrow Constant size circuit.



There is a poly-size circuit for every language in P.

- Let M a 1-tape TM in time t(n).
- Wlog. oblivious: the direction of the head does not depend on the input.
 - \rightarrow See simulation of a TM by a 1-tape TM.
- A configuration c_i at time i
 consists in the state of the TM
 and the symbol read by all heads.
 - \rightarrow c_i constant size string.
- The content of a cell c at time i only depends on the last time ji the head was in c, which only depends on i.
- We can compute c_{i+1} from c_i, the input and c_{ji}.
 - $\rightarrow \mbox{Constant size circuit}.$



Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

 \rightarrow Circuits seems easier to work with than TMs.

Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

 \rightarrow Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

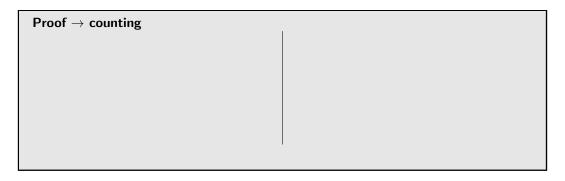
Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

→ Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.



Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

→ Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

Proof \rightarrow **counting** Number of Boolean functions with *n*

inputs: 2^{2^n} .

Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

→ Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

Proof \rightarrow counting

Number of Boolean functions with n inputs: 2^{2^n} .

Number of circuits with n inputs and size s: $\leq ((n+5)2^s)^s$.

- \rightarrow Each gate has a type among n+5 choices.
- \rightarrow Each gate has 2^s choices for its parents
- \rightarrow There are *s* gates.

Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

→ Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

Proof \rightarrow counting

Number of Boolean functions with n inputs: 2^{2^n} .

Number of circuits with n inputs and size s: $\leq ((n+5)2^s)^s$.

- \rightarrow Each gate has a type among n+5 choices.
- \rightarrow Each gate has 2^s choices for its parents
- \rightarrow There are *s* gates.

For $s = \sqrt{2}^{n}/n$, the ratio $2^{2^{n}}$ by $2^{s \log(n+1) + s^{2}}$ tends to 1.

Claim

Showing that any $L \in NP$ cannot be computed by a poly-size circuit would prove $P \neq NP$.

→ Circuits seems easier to work with than TMs.

Lemma (Shannon)

Almost every Boolean function needs a circuit of exponential size to be computed.

Proof \rightarrow counting

Number of Boolean functions with n inputs: 2^{2^n} .

Number of circuits with n inputs and size s: $\leq ((n+5)2^s)^s$.

- \rightarrow Each gate has a type among n+5 choices.
- \rightarrow Each gate has 2^s choices for its parents
- \rightarrow There are s gates.

For $s = \sqrt{2}^{n}/n$, the ratio $2^{2^{n}}$ by $2^{s \log(n+1) + s^{2}}$ tends to 1.

We still do not know any explicit such function!

Classes of small circuits

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Classes of small circuits

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

Classes of small circuits

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

→ In particular, the fan-in is unbounded. Otherwise, the output only depends in finitely many inputs.

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

→ In particular, the fan-in is unbounded.

Otherwise, the output only depends in finitely many inputs.

Definition (NC¹)

The class NC¹ consists of languages recognizable by circuits of polynomial size, logarithmic depth and fan-in 2.

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

→ In particular, the fan-in is unbounded. Otherwise, the output only depends in finitely many inputs.

Definition (NC¹)

The class NC¹ consists of languages recognizable by circuits of polynomial size, logarithmic depth and fan-in 2.

What if we restrict the number of communications?

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

→ In particular, the fan-in is unbounded. Otherwise, the output only depends in finitely many inputs.

Definition (NC¹)

The class NC¹ consists of languages recognizable by circuits of polynomial size, logarithmic depth and fan-in 2.

What if we restrict the number of communications?

Definition (WLAC⁰)

The class WLAC⁰ consists of languages recognizable by circuits of constant depth with linearly many wires.

 \rightarrow Extremely efficient parallel algorithms.

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

→ In particular, the fan-in is unbounded. Otherwise, the output only depends in finitely many inputs.

Definition (NC¹)

The class NC¹ consists of languages recognizable by circuits of polynomial size, logarithmic depth and fan-in 2.

What if we restrict the number of communications?

Definition (WLAC⁰)

The class WLAC⁰ consists of languages recognizable by circuits of constant depth with linearly many wires.

ightarrow Extremely efficient parallel algorithms.

Claim

 $\mathsf{WLAC}^0\subseteq\mathsf{AC}^0\subseteq\mathsf{NC}^1$

We need to restrict circuits to study them. Gives a notion of efficiently parallelizable languages.

Definition (AC⁰)

The class AC⁰ consists of languages recognizable by circuits of polynomial size, constant depth.

→ In particular, the fan-in is unbounded. Otherwise, the output only depends in finitely many inputs.

Definition (NC¹)

The class NC¹ consists of languages recognizable by circuits of polynomial size, logarithmic depth and fan-in 2.

What if we restrict the number of communications?

Definition (WLAC⁰)

The class WLAC⁰ consists of languages recognizable by circuits of constant depth with linearly many wires.

→ Extremely efficient parallel algorithms.

Claim

 $\mathsf{WLAC}^0 \subseteq \mathsf{AC}^0 \subseteq \mathsf{NC}^1$

Proof

- We can remove the gates not linked to any wire.
- a ∨ gate of fan-in n can be transformed into a binary tree of size 2n and depth log(n).

Adding numbers

Problem (ADD)

• **Given:** Two *n*-bits numbers *x* and

V

• **Output:** A n + 1-bits number z =

x + y

Problem (ADD)

• **Given:** Two *n*-bits numbers *x* and

У

• Output: A n + 1-bits number z = x + y

Not a language, but a function.

 \rightarrow Consider circuits with several outputs (one for each bit of the answer)

Problem (ADD)

• **Given:** Two *n*-bits numbers *x* and

У

• **Output:** A n + 1-bits number z = x + y

Not a language, but a function.

- \rightarrow Consider circuits with several outputs (one for each bit of the answer)
- \rightarrow numbers are $x = x_n \cdots x_1$ from high weights to low weights

Problem (ADD)

• **Given:** Two *n*-bits numbers *x* and

У

• Output: A n + 1-bits number z = x + y

Not a language, but a function.

- \rightarrow Consider circuits with several outputs (one for each bit of the answer)
- \rightarrow numbers are $x = x_n \cdots x_1$ from high weights to low weights

Example (A circuit for ADD)

- Notation:

 denotes XOR
- **Idea:** Computes the successive carries:
 - $c_0 = x_0 \wedge y_0$
 - $c_i = (x_i \wedge y_i) \vee ((x_i \vee y_i) \wedge c_{i-1})$

Problem (ADD)

• **Given:** Two *n*-bits numbers *x* and

У

• Output: A n + 1-bits number z = x + y

Not a language, but a function.

- \rightarrow Consider circuits with several outputs (one for each bit of the answer)
- \rightarrow numbers are $x = x_n \cdots x_1$ from high weights to low weights

Example (A circuit for ADD)

- Notation:

 denotes XOR
- Idea: Computes the successive carries:
 - $c_0 = x_0 \wedge y_0$
 - $c_i = (x_i \wedge y_i) \vee ((x_i \vee y_i) \wedge c_{i-1})$
- The outputs are then:
 - $\bullet \ \ z_0=x_0\oplus y_0$
 - $z_i = x_i \oplus y_i \oplus c_{i-1}$
 - $z_{n+1} = c_n$

Problem (ADD)

• **Given:** Two *n*-bits numbers *x* and

У

• **Output:** A n + 1-bits number z = x + y

Not a language, but a function.

- \rightarrow Consider circuits with several outputs (one for each bit of the answer)
- \rightarrow numbers are $x = x_n \cdots x_1$ from high weights to low weights

Example (A circuit for ADD)

- Notation:

 denotes XOR
- Idea: Computes the successive carries:
 - $c_0 = x_0 \wedge y_0$
 - $c_i = (x_i \wedge y_i) \vee ((x_i \vee y_i) \wedge c_{i-1})$
- The outputs are then:
 - $\bullet \ \ z_0=x_0\oplus y_0$
 - $z_i = x_i \oplus y_i \oplus c_{i-1}$
 - $z_{n+1} = c_n$
- → linear size
- → linear depth

Problem (ADD)

• Given: Two *n*-bits numbers *x* and

У

• Output: A n + 1-bits number z = x + y

Not a language, but a function.

- \rightarrow Consider circuits with several outputs (one for each bit of the answer)
- \rightarrow numbers are $x = x_n \cdots x_1$ from high weights to low weights

Example (A circuit for ADD)

- Notation:

 denotes XOR
- Idea: Computes the successive carries:
 - $c_0 = x_0 \wedge y_0$
 - $c_i = (x_i \wedge y_i) \vee ((x_i \vee y_i) \wedge c_{i-1})$
- The outputs are then:
 - $\bullet \ \ z_0=x_0\oplus y_0$
 - $z_i = x_i \oplus y_i \oplus c_{i-1}$
 - $z_{n+1} = c_n$
- → linear size
- → linear depth

This is roughly the sequential algorithm.

 \rightarrow We can do better in parallel!

Lemma

 $\mathsf{ADD} {\in \mathsf{AC}^0}$

Lemma

 $ADD \in AC^0$

Proof

• Idea: Still computes the carries.

The carry c_i is 1 iff

- a carry is created at a position $j \leq i$, i.e. $x_j \wedge y_j$, and
- the carry is not lost between i and j, i.e. $\bigwedge_{l=j+1}^{i} (x_l \vee y_l)$.

Lemma

 $ADD \in AC^0$

Proof

• Idea: Still computes the carries.

The carry c_i is 1 iff

- a carry is created at a position $j \leq i$, i.e. $x_j \wedge y_j$, and
- the carry is not lost between i and j, i.e. $\bigwedge_{l=i+1}^{i} (x_l \vee y_l)$.
- Thus:

$$c_i = \bigvee_{j=0}^i ((x_j \wedge y_j) \wedge \bigwedge_{l=j+1}^i (x_l \vee y_l)$$

Lemma

ADD∈ AC⁰

Proof

• Idea: Still computes the carries.

The carry c_i is 1 iff

- a carry is created at a position $j \leq i$, i.e. $x_j \wedge y_j$, and
- the carry is not lost between i and j, i.e. $\bigwedge_{l=i+1}^{i} (x_l \vee y_l)$.
- Thus:

$$c_i = \bigvee_{j=0}^i ((x_j \wedge y_j) \wedge \bigwedge_{l=j+1}^i (x_l \vee y_l)$$

• As before: $z_0 = x_0 \oplus y_0$, $z_i = x_i \oplus y_i \oplus c_i$ and $z_{n+1} = c_n$

Lemma

ADD∈ AC⁰

Proof

• Idea: Still computes the carries.

The carry c_i is 1 iff

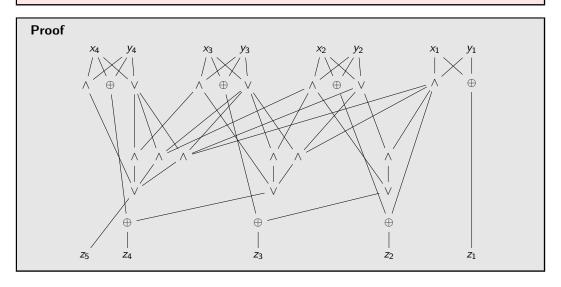
- a carry is created at a position $j \leq i$, i.e. $x_j \wedge y_j$, and
- the carry is not lost between i and j, i.e. $\bigwedge_{l=i+1}^{i} (x_l \vee y_l)$.
- Thus:

$$c_i = \bigvee_{j=0}^i ((x_j \wedge y_j) \wedge \bigwedge_{l=j+1}^i (x_l \vee y_l)$$

- As before: $z_0 = x_0 \oplus y_0$, $z_i = x_i \oplus y_i \oplus c_i$ and $z_{n+1} = c_n$
- \rightarrow Quadratic size (by factorizing the $(x_j \land y_j)$ and $(x_j \lor y_j)$)
- \rightarrow Constant depth

Lemma

 $ADD \in AC^0$



What if we want to add several numbers in parallel?

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers $x_1, \ldots x_n$
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{\log(n)}$

- **Given:** $\log(n)$ many *n*-bits numbers $x_1, \dots x_{\log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers $x_1, \ldots x_n$
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{\log(n)}$

- **Given:** $\log(n)$ many *n*-bits numbers $x_1, \ldots x_{\log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What are their respective complexities?

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers $x_1, \ldots x_n$
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{\log(n)}$

- **Given:** $\log(n)$ many *n*-bits numbers $x_1, \dots x_{\log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What are their respective complexities?

Claim

 $ADD^n \in NC^1$

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers $x_1, \ldots x_n$
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{\log(n)}$

- **Given:** log(n) many *n*-bits numbers $x_1, \dots x_{log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What are their respective complexities?

Claim

 $ADD^n \in NC^1$

Proof

A binary tree of AC⁰ circuits for ADD.

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers $x_1, \ldots x_n$
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{log(n)}$

- **Given:** $\log(n)$ many *n*-bits numbers $x_1, \ldots x_{\log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What are their respective complexities?

Claim

 $ADD^n \in NC^1$

Proof

A binary tree of AC⁰ circuits for ADD.

Lemma

 $ADD^{\log(n)} \in AC^0$

A binary tree only gives depth log log(n)

 \rightarrow next slide

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers x_1, \ldots, x_n
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{\log(n)}$

- **Given:** log(n) many *n*-bits numbers $x_1, \dots x_{log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What are their respective complexities?

Claim

 $ADD^n \in NC^1$

Proof

A binary tree of AC⁰ circuits for ADD.

Lemma

 $ADD^{\log(n)} \in AC^0$

A binary tree only gives depth log log(n)

 \rightarrow next slide

Theorem

 $ADD^n \notin AC^0$

→ next lecture

What if we want to add several numbers in parallel?

Problem ADDⁿ

- **Given:** n many n-bits numbers $x_1, \ldots x_n$
- Output: A $n + \log(n)$ -bits number $z = x_1 + \cdots + x_n$

Problem $ADD^{\log(n)}$

- **Given:** $\log(n)$ many *n*-bits numbers $x_1, \ldots x_{\log(n)}$
- Output: A $n + \log \log(n)$ -bits number $z = x_1 + \cdots + x_{\log(n)}$

What are their respective complexities?

Claim

 $ADD^n \in NC^1$

Proof

A binary tree of AC⁰ circuits for ADD.

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

A binary tree only gives depth log log(n)

 \rightarrow next slide

Theorem

 $ADD^n \notin AC^0$

→ next lecture

The case of WLAC⁰ will be the topic of the rest of this lecture.

Lemma

 $\mathsf{ADD}^{\mathsf{log}(\mathit{n})} {\in \mathsf{AC}^0}$

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} {\in \mathsf{AC}^0}$

Intuition

• Adding the following numbers...

```
x_1 = 1 1 0 0 1 0 1 1 

x_2 = 0 0 0 1 1 0 0 1 

x_3 = 1 1 1 0 0 1 1 1
```

Lemma

 $\mathsf{ADD}^{\mathsf{log}(\mathit{n})} {\in \mathsf{AC}^0}$

Intuition

• Adding the following numbers...

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

Intuition

• Adding the following numbers...

$$x_1 = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$$

 $x_2 = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1$
 $x_3 = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1$
 $x_4 = 10$

• ... reduces to adding the numbers:

$$y_1 = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$$

 $y_2 = 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

Intuition

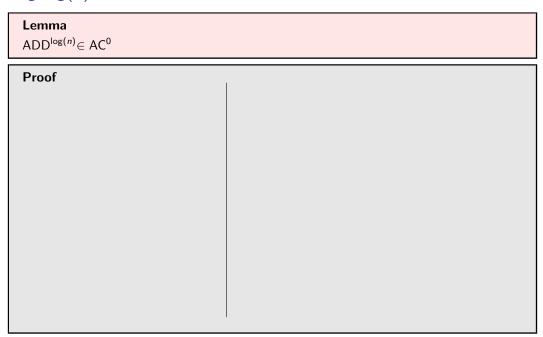
• Adding the following numbers...

$$x_1 = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$$
 $x_2 = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$
 $x_3 = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$
 $s_4 = 10$

• ... reduces to adding the numbers:

$$y_1 = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0$$

 $y_2 = 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$



Lemma

 $ADD^{\log(n)} \in AC^0$

Proof

• For $1 \le j \le n$, $s_j = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i $\rightarrow \log \log(n)$ bits numbers.

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

Proof

- For $1 \le j \le n$,
 - $s_i = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i
 - $\rightarrow \log \log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end.
 - \rightarrow the earlier diagonal form
 - $\rightarrow n + \log \log(n)$ bits numbers

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

Proof

- For $1 \le j \le n$,
 - $s_i = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i
 - $\rightarrow \log \log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end.
 - \rightarrow the earlier diagonal form
 - $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$

Lemma

 $ADD^{\log(n)} \in AC^0$

- For $1 \le j \le n$,
 - $s_i = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i
 - $\rightarrow \log \log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end
 - \rightarrow the earlier diagonal form
 - $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$
- All s_j and y_i depends on only log(n) bits of the input
 - \rightarrow they can be computed in AC⁰ by "brute force"

Lemma

 $ADD^{\log(n)} \in AC^0$

Proof

- For 1 < i < n, $s_i = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i
 - $\rightarrow \log \log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the Ith bits
 - of the s_i , with l-1 zeroes in the end.
 - \rightarrow the earlier diagonal form
 - $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$
- All s_i and y_i depends on only log(n) bits of the input
 - \rightarrow they can be computed in AC⁰ by "brute force"

• New goal: Add log log(n) many $(n + \log \log(n))$ bits numbers

Lemma

 $ADD^{\log(n)} \in AC^0$

- For $1 \le j \le n$, $s_j = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i $\rightarrow \log \log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end
 - \rightarrow the earlier diagonal form
 - $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$
- All s_j and y_l depends on only log(n) bits of the input
 → they can be computed in AC⁰
 by "brute force"

- New goal: Add log log(n) many (n + log log(n)) bits numbers
- New new goal: Add log log log(n) many (n + log log(n) + log log log(n)) bits numbers

Lemma

 $ADD^{\log(n)} \in AC^0$

- For $1 \le j \le n$, $s_j = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i $\rightarrow \log \log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end.
 - \rightarrow the earlier diagonal form $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$
- All s_j and y_l depends on only log(n) bits of the input
 → they can be computed in AC⁰
 by "brute force"

- New goal: Add log log(n) many (n + log log(n)) bits numbers
- New new goal: Add log log log(n) many (n + log log(n) + log log log(n)) bits numbers
- ..
- Last goal: Add two
 n + log log(n) + ··· + log^k(n) bits number
 where k = smallest integer such that the
 k-fold application of log on n is ≤ 2.

Lemma

 $ADD^{\log(n)} \in AC^0$

- For $1 \le j \le n$, $s_j = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i $\rightarrow \log\log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end.
 - \rightarrow the earlier diagonal form $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$
- All s_j and y_l depends on only log(n) bits of the input

 → they can be computed in AC⁰
 by "brute force"

- New goal: Add log log(n) many (n + log log(n)) bits numbers
- New new goal: Add log log log(n) many (n + log log(n) + log log log(n)) bits numbers
- ...
- Last goal: Add two $n + \log \log(n) + \cdots + \log^k(n)$ bits number where k = smallest integer such that the k-fold application of log on n is ≤ 2 .
- Small computation, for n big: $\log \log(n) + \cdots + \log^k(n) \le \log(n)$

Lemma

 $ADD^{\log(n)} \in AC^0$

- For $1 \le j \le n$, $s_j = \sum_{i=1}^{\log(n)} j^{\text{th}}$ bit of x_i $\rightarrow \log\log(n)$ bits numbers.
- For $1 \le l \le \log \log(n)$, let y_l be the concatenation of the l^{th} bits of the s_j , with l-1 zeroes in the end.
 - \rightarrow the earlier diagonal form $\rightarrow n + \log \log(n)$ bits numbers
- Clearly: $\sum_i x_i = \sum_l y_l$
- All s_j and y_l depends on only log(n) bits of the input
 → they can be computed in AC⁰
 by "brute force"

- New goal: Add log log(n) many (n + log log(n)) bits numbers
- New new goal: Add log log log(n) many (n + log log(n) + log log log(n)) bits numbers
- ..
- Last goal: Add two $n + \log \log(n) + \cdots + \log^k(n)$ bits number where k = smallest integer such that the k-fold application of log on n is ≤ 2 .
- Small computation, for n big: $\log \log(n) + \cdots + \log^k(n) \le \log(n)$
- We just have to add two n + log(n) numbers, that can be computed in AC⁰ (depends on log(n) bits of the y₁)

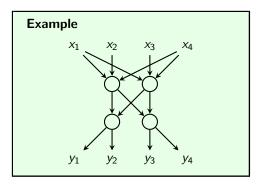
The power of WLAC⁰

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

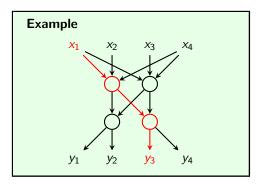
We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)



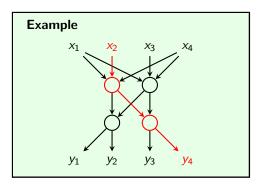
We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)



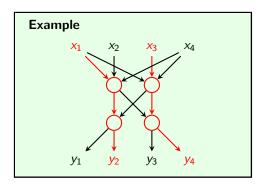
We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)



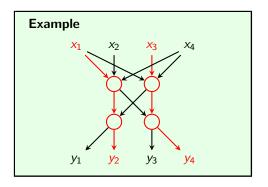
We will study circuits from the properties of the underlying graph.

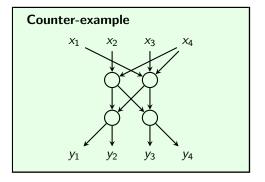
Definition (superconcentrator)



We will study circuits from the properties of the underlying graph.

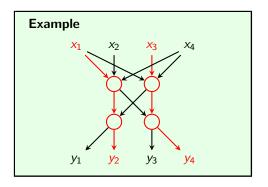
Definition (superconcentrator)

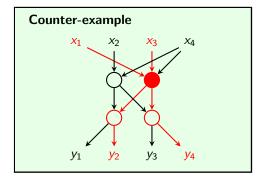




We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)





Intuition: to have many vertex disjoint paths, there must be many edges.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

To tackle WLAC⁰, we have more structure.

Theorem (Dolev, Dwork, Pippinger, Widgerson)

There are no superconcentrator with constant-depth and linearly many edges.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

To tackle WLAC⁰, we have more structure.

Theorem (Dolev, Dwork, Pippinger, Widgerson)

There are no superconcentrator with constant-depth and linearly many edges.

To have a lower bound against WLAC⁰, we only need to prove that certain circuits have to be superconcentrators.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

To tackle WLAC⁰, we have more structure.

Theorem (Dolev, Dwork, Pippinger, Widgerson)

There are no superconcentrator with constant-depth and linearly many edges.

To have a lower bound against WLAC⁰, we only need to prove that certain circuits have to be superconcentrators.

We have tools for that.

Definition (Cut)

Let X and Y be two sets of vertices in a graph. A cut between X and Y is a set of vertices whose removal disconnect X and Y.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

To tackle WLAC⁰, we have more structure.

Theorem (Dolev, Dwork, Pippinger, Widgerson)

There are no superconcentrator with constant-depth and linearly many edges.

To have a lower bound against WLAC⁰, we only need to prove that certain circuits have to be superconcentrators.

We have tools for that.

Definition (Cut)

Let X and Y be two sets of vertices in a graph. A cut between X and Y is a set of vertices whose removal disconnect X and Y.

Theorem (Menger)

For any two disjoints X and Y, the minimum size of a cut between X and Y is also the maximum number of vertex disjoint paths between X and Y.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

To tackle WLAC⁰, we have more structure.

Theorem (Dolev, Dwork, Pippinger, Widgerson)

There are no superconcentrator with constant-depth and linearly many edges.

To have a lower bound against WLAC⁰, we only need to prove that certain circuits have to be superconcentrators.

We have tools for that.

Definition (Cut)

Let X and Y be two sets of vertices in a graph. A cut between X and Y is a set of vertices whose removal disconnect X and Y.

Theorem (Menger)

For any two disjoints X and Y, the minimum size of a cut between X and Y is also the maximum number of vertex disjoint paths between X and Y.

→ Can be seen as a special case of the max-flow min-cut theorem.

Intuition: to have many vertex disjoint paths, there must be many edges. But:

Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly many edges.

→ it has logarithmic depth.

To tackle WLAC⁰, we have more structure.

Theorem (Dolev, Dwork, Pippinger, Widgerson)

There are no superconcentrator with constant-depth and linearly many edges.

To have a lower bound against WLAC⁰, we only need to prove that certain circuits have to be superconcentrators.

We have tools for that.

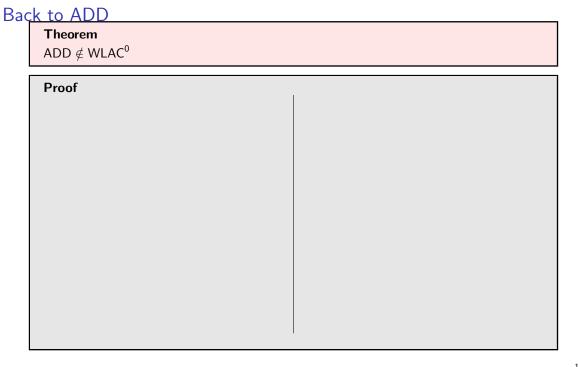
Definition (Cut)

Let X and Y be two sets of vertices in a graph. A cut between X and Y is a set of vertices whose removal disconnect X and Y.

Theorem (Menger)

For any two disjoints X and Y, the minimum size of a cut between X and Y is also the maximum number of vertex disjoint paths between X and Y.

- \rightarrow Can be seen as a special case of the max-flow min-cut theorem.
- \rightarrow To show that there are many vertex disjoint paths, we must show that there are no small cuts.



Theorem

 $\mathsf{ADD} \notin \mathsf{WLAC}^0$

Proof
• Let C be a circuit for ADD with n inputs.

Theorem

 $ADD \notin WLAC^0$

- Let *C* be a circuit for ADD with *n* inputs.
- *G* is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.

Theorem

ADD ∉ WLAC⁰

- Let C be a circuit for ADD with n inputs.
- *G* is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.
- Let $i_1 < j_1 < \cdots < i_k < j_k$.
 - \rightarrow sets I and J.

Theorem

ADD ∉ WLAC⁰

- Let C be a circuit for ADD with n inputs.
- *G* is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.
- Let $i_1 < j_1 < \cdots < i_k < j_k$.
 - \rightarrow sets I and J.
- *C'* is *C* with:
 - x_i set to 1 and y_i set to 0 for $i \notin I$
 - x_i and y_i merged for $i \in I$
 - \rightarrow for $i \in I$, x_i and y_i must be set to the same value.
 - \rightarrow k vertex disjoint paths in C' gives the same in G.

Theorem

ADD ∉ WLAC⁰

- Let C be a circuit for ADD with n inputs.
- G is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.
- Let $i_1 < j_1 < \cdots < i_k < j_k$. \rightarrow sets I and J.
- *C'* is *C* with:
 - x_i set to 1 and y_i set to 0 for $i \notin I$
 - x_i and y_i merged for $i \in I$
 - \rightarrow for $i \in I$, x_i and y_i must be set to the same value.
 - $\rightarrow k$ vertex disjoint paths in C' gives the same in G.

- **Claim:** the output z_{j_l} is 0 if x_{i_l} and y_{i_l} are both 1. the output z_{j_l} is 1 if x_{i_l} and y_{i_l} are both 0.
 - \rightarrow if $x_{i_l} = y_{i_l}$, what is on the right does not matter.
 - \rightarrow a carry is created and propagated if and only if both are 1.

Theorem

ADD ∉ WLAC⁰

- Let C be a circuit for ADD with n inputs.
- *G* is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.
- Let $i_1 < j_1 < \cdots < i_k < j_k$. \rightarrow sets I and J.
- *C'* is *C* with:
 - x_i set to 1 and y_i set to 0 for $i \notin I$
 - x_i and y_i merged for $i \in I$
 - \rightarrow for $i \in I$, x_i and y_i must be set to the same value.
 - $\rightarrow k$ vertex disjoint paths in C' gives the same in G.

- **Claim:** the output z_{j_l} is 0 if x_{i_l} and y_{i_l} are both 1. the output z_{j_l} is 1 if x_{i_l} and y_{i_l} are both 0.
 - \rightarrow if $x_{i_l} = y_{i_l}$, what is on the right does not matter.
 - \rightarrow a carry is created and propagated if and only if both are 1.
- Thus there are 2^k possible outcomes for then outputs in J, depending on the inputs in I.

Theorem

ADD ∉ WLAC⁰

- Let C be a circuit for ADD with n inputs.
- *G* is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.
- Let $i_1 < j_1 < \cdots < i_k < j_k$. \rightarrow sets I and J.
- *C'* is *C* with:
 - x_i set to 1 and y_i set to 0 for $i \notin I$
 - x_i and y_i merged for $i \in I$
 - \rightarrow for $i \in I$, x_i and y_i must be set to the same value.
 - \rightarrow k vertex disjoint paths in C' gives the same in G.

- **Claim:** the output z_{j_l} is 0 if x_{i_l} and y_{i_l} are both 1. the output z_{j_l} is 1 if x_{i_l} and y_{i_l} are both 0.
 - \rightarrow if $x_{i_l} = y_{i_l}$, what is on the right does not matter.
 - \rightarrow a carry is created and propagated if and only if both are 1.
- Thus there are 2^k possible outcomes for then outputs in *J*, depending on the inputs in *I*.
- If there were a cut of size < k, there would be < 2^k possible outcomes.

Theorem

ADD ∉ WLAC⁰

- Let C be a circuit for ADD with n inputs.
- *G* is the graph with inputs x_i and y_i merged.
 - \rightarrow we want to show that it is a superconcentrator.
- Let $i_1 < j_1 < \cdots < i_k < j_k$. \rightarrow sets I and J.
- *C'* is *C* with:
 - x_i set to 1 and y_i set to 0 for $i \notin I$
 - x_i and y_i merged for $i \in I$
 - \rightarrow for $i \in I$, x_i and y_i must be set to the same value.
 - $\rightarrow k$ vertex disjoint paths in C' gives the same in G.

- **Claim:** the output z_{j_l} is 0 if x_{i_l} and y_{i_l} are both 1. the output z_{j_l} is 1 if x_{i_l} and y_{i_l} are both 0.
 - \rightarrow if $x_{i_l} = y_{i_l}$, what is on the right does not matter.
 - \rightarrow a carry is created and propagated if and only if both are 1.
- Thus there are 2^k possible outcomes for then outputs in *J*, depending on the inputs in *I*.
- If there were a cut of size < k, there would be < 2^k possible outcomes.
- We conclude by Menger's theorem.

Recap

We have seen today:

	WLAC ⁰	AC ⁰	NC^1
ADD	X	1	1
$ADD^{log(n)}$	X	1	1
ADD^n	X	X	✓

Recap

We have seen today:

	WLAC ⁰	AC ⁰	NC ¹
ADD	X	1	✓
$ADD^{log(n)}$	Х	1	1
ADD^n	X	X	✓

Whether ADD can be done in constant depth with linearly many nodes is a major open problem.

Limitations of constant-depth circuits

Corentin Barloy Michael Walter Thomas Zeume

Introduction

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} {\in \mathsf{AC}^0}$

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} {\in \mathsf{AC}^0}$

We now want to show lower bounds, i.e. inexpressibility results.

The goal today:

Theorem

 $\mathsf{ADD}^n \notin \mathsf{AC}^0$

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} {\in \mathsf{AC}^0}$

We now want to show lower bounds, i.e. inexpressibility results.

The goal today:

Theorem

ADDⁿ∉ AC⁰

 \rightarrow Not so easy!

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

We now want to show lower bounds, i.e. inexpressibility results.

The goal today:

Theorem

 $ADD^n \notin AC^0$

 \rightarrow Not so easy!

Simplification: Go back to languages.

 \rightarrow Only look at the last bit of the output.

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

$$\mathsf{ADD}^{\mathsf{log}(n)} {\in \mathsf{AC}^0}$$

We now want to show lower bounds, i.e. inexpressibility results.

The goal today:

Theorem

 $ADD^n \notin AC^0$

 \rightarrow Not so easy!

Simplification: Go back to languages.

 \rightarrow Only look at the last bit of the output.

 \rightarrow y_n only depends on the number of 1 among x_n^1,\ldots,x_n^n .

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

$$\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$$

We now want to show lower bounds, i.e. inexpressibility results.

The goal today:

Theorem

 $ADD^n \notin AC^0$

 \rightarrow Not so easy

Simplification: Go back to languages.

 \rightarrow Only look at the last bit of the output.

 $\rightarrow y_n$ only depends on the number of 1 among x_n^1, \dots, x_n^n .

Problem (Parity)

- **Given:** n bits x_1, \ldots, x_n
- **Output:** The parity of the number of 1 in the inputs: $\sum_i x_i \mod 2$.

Recall: AC⁰ is the class of languages computable but constant depth and polynomial size circuits.

We showed that it is rather powerful:

Lemma

 $\mathsf{ADD}^{\mathsf{log}(n)} \in \mathsf{AC}^0$

We now want to show lower bounds, i.e. inexpressibility results.

The goal today:

Theorem

 $ADD^n \notin AC^0$

 \rightarrow Not so easy!

Simplification: Go back to languages.

 \rightarrow Only look at the last bit of the output.

 $\rightarrow y_n$ only depends on the number of 1 among x_n^1, \dots, x_n^n .

Problem (Parity)

- **Given:** n bits x_1, \ldots, x_n
- **Output:** The parity of the number of 1 in the inputs: $\sum_i x_i \mod 2$.

Theorem (New goal)

Parity $\notin AC^0$

The Parity language

Parity = (0*10*10*)* is regular.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

Proof

• Let $A = (Q, \delta, i, F)$ be an automaton.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC1.

- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps i to a state in F.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

Proof

- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps i to a state in F.

 W_1 W_2 W_3 W_4

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC1.

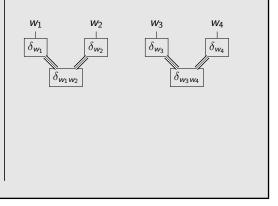
- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps *i* to a state in *F*.

Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

- Let $\mathcal{A} = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps i to a state in F.

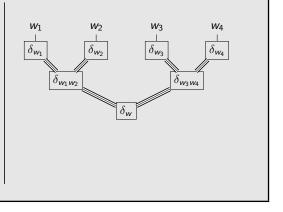


Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps i to a state in F.

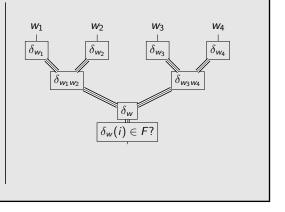


Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

- Let $A = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps i to a state in F.



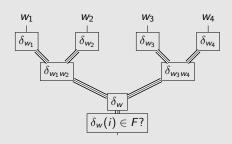
Parity = (0*10*10*)* is regular. This already gives an upper bound.

Theorem

All regular languages are in NC¹.

Proof

- Let $\mathcal{A} = (Q, \delta, i, F)$ be an automaton.
- For w a word, δ_w is the extended transition function.
- Finitely many functions Q → Q
 → can be represented by strings of constant length.
- We have constant size circuits for:
 - computing δ_x from a bit x,
 - function composition $\delta_1 \circ \delta_2$,
 - whether a function maps *i* to a state in *F*.



A binary tree of constant size circuits: logarithmic depth and linear size

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- $\rightarrow \mbox{ Useful is practice}.$

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w) \text{ is the term with } \begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w)$ is the term with $\begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

Proof

• $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w) \text{ is the term with } \begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w)$ is the term with $\begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals.
 - \rightarrow variable x_i does not appear in T_i .

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals. \rightarrow variable x_i does not appear in T_i .
- Take w accepted by T_i :
 - \rightarrow w with x_i flipped accepted by T_i .
 - \rightarrow it has different parity.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals. \rightarrow variable x_i does not appear in T_i .
- Take w accepted by T_i :
 - \rightarrow w with x_i flipped accepted by T_i .
 - \rightarrow it has different parity.

- Every T_i has n literals:
 - \rightarrow all variables appear.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w) \text{ is the term with } \begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals. \rightarrow variable x_i does not appear in T_i .
- Take w accepted by T_i :
 - \rightarrow w with x_i flipped accepted by T_i .
 - \rightarrow it has different parity.

- Every T_i has n literals:
 - \rightarrow all variables appear.
- T_i accepts only one word.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w) \text{ is the term with } \begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals. \rightarrow variable x_i does not appear in T_i .
- Take w accepted by T_i :
 - \rightarrow w with x_i flipped accepted by T_i .
 - \rightarrow it has different parity.

- Every T_i has n literals:
- \rightarrow all variables appear.
- T_i accepts only one word.
- Thus D accepts at most N words.

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w) \text{ is the term with } \begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals. \rightarrow variable x_i does not appear in T_i .
- Take w accepted by T_i :
 - \rightarrow w with x_i flipped accepted by T_i .
 - \rightarrow it has different parity.

- Every T_i has n literals: \rightarrow all variables appear.
- T_i accepts only one word.
- Thus D accepts at most N words.
- There are 2^{n-1} words in Parity.

$$\to N \geq 2^{n-1}.$$

Definition (DNF)

A literal is a variable or its negation. A term is a conjunction of literals. A DNF is a disjunction of clauses.

- \rightarrow depth-3 AC⁰ circuits.
- \rightarrow Useful is practice.

Claim

Any DNF for Parity must have at least 2^{n-1} terms.

Optimal with $\bigvee_{w \in \mathsf{Parity}} T(w)$ $\to T(w)$ is the term with $\begin{cases} x_i & \text{if } w_i = 1 \\ \neg x_i & \text{if } w_i = 0 \end{cases}$

Proof

- $D = \bigvee_{i=1}^{N} T_i$ a DNF for Parity.
- We remove all terms with a contradiction $x_i \wedge \neg x_i$.
- Assume one T_i has < n literals. \rightarrow variable x_i does not appear in T_i .
- Take w accepted by T_i :
 - \rightarrow w with x_i flipped accepted by T_i .
 - \rightarrow it has different parity.

- Every T_i has n literals: \rightarrow all variables appear.
- T_i accepts only one word.
- Thus D accepts at most N words.
- There are 2^{n-1} words in Parity.

$$\rightarrow N \geq 2^{n-1}$$
.

Both bounds works for CNF.

An acceleration

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC^0 circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

An acceleration

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof

Idea: Compute Parity of small blocks, then compute Parity of the parities.

An acceleration

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof

Idea: Compute Parity of small blocks, then compute Parity of the parities.

$$X_1$$
 X_2 \cdots \cdots X_{n-1} X_n

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof

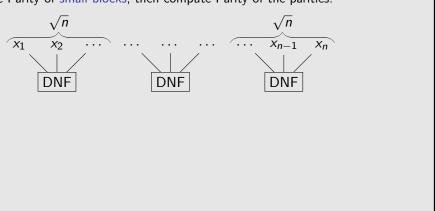
$$\overbrace{x_1 \quad x_2 \quad \dots} \quad \overbrace{x_{n-1} \quad x_n} \quad x_n$$

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

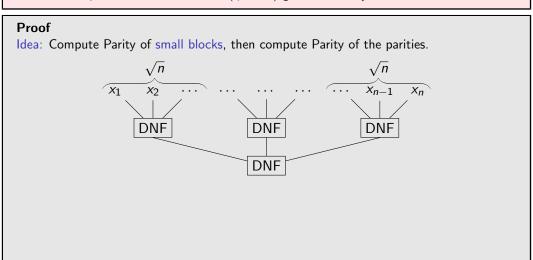
Proof



If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.



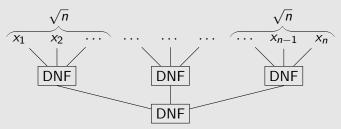
If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof

Idea: Compute Parity of small blocks, then compute Parity of the parities.



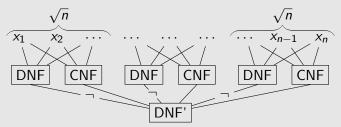
• So far: depth 6.

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof



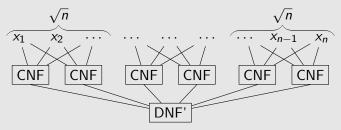
- So far: depth 6.
- DNF' has no negations.

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof



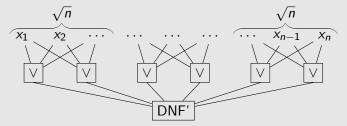
- So far: depth 6.
- DNF' has no negations.
- Use De Morgan's laws.

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof



- So far: depth 6.
- DNF' has no negations.
- Use De Morgan's laws.

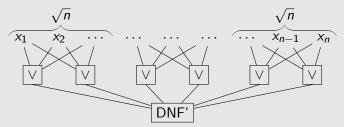
- Collapse the two layers of ∧.
 - \rightarrow depth 4

If more depth is available, this can be improved.

Lemma (Håstad)

There is a depth-4 AC⁰ circuit with $O(\sqrt{n}2^{\sqrt{n}})$ gates for Parity.

Proof



- So far: depth 6.
- DNF' has no negations.
- Use De Morgan's laws.

- Collapse the two layers of ∧.
 → depth 4
- $2\sqrt{n} + 1$ circuits of size $2^{\sqrt{n}-1}$. \rightarrow size $O(\sqrt{n}2^{\sqrt{n}})$

If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.



If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

Proof

If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

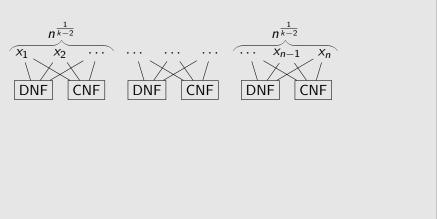
Proof

If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

Proof

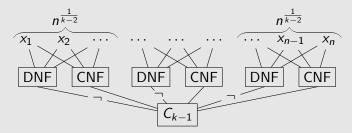


If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

Proof



- C_{k-1} of depth k with a last \wedge layer
 - \rightarrow has $n^{\frac{k-3}{k-2}}$ inputs
 - \rightarrow size $O(n \cdot 2^{n^{\frac{1}{k-2}}})$

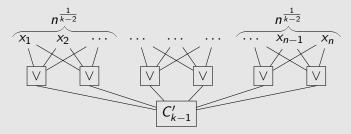
If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

Proof

By induction.



- C_{k-1} of depth k with a last \wedge layer
 - \rightarrow has $n^{\frac{k-3}{k-2}}$ inputs
 - \rightarrow size $O(n \cdot 2^{n^{\frac{1}{k-2}}})$

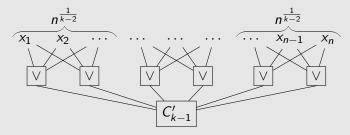
• Collapse of two layers: depth *k*

If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

Proof



- C_{k-1} of depth k with a last \wedge layer
 - \rightarrow has $n^{\frac{k-3}{k-2}}$ inputs
 - \rightarrow size $O(n \cdot 2^{n^{\frac{1}{k-2}}})$

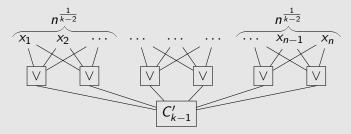
- Collapse of two layers: depth *k*
- $2 \cdot n^{\frac{k-3}{k-2}}$ DNF of size $2^{n^{\frac{1}{k-2}}}$

If more depth is available, this can be improved even further.

Lemma (Håstad)

There is a depth-k AC⁰ circuit with $O(n \cdot 2^{n^{\frac{1}{k-2}}})$ gates for Parity.

Proof



- C_{k-1} of depth k with a last \wedge layer
 - \rightarrow has $n^{\frac{k-3}{k-2}}$ inputs
 - \rightarrow size $O(n \cdot 2^{n^{\frac{1}{k-2}}})$

- Collapse of two layers: depth *k*
- $2 \cdot n^{\frac{k-3}{k-2}}$ DNF of size $2^{n^{\frac{1}{k-2}}}$
- Total size $O(n \cdot 2^{n^{\frac{1}{k-2}}})$.

Proof 1: Switching lemma

It is useful to assume that AC^0 circuit have a special shape.

It is useful to assume that AC^0 circuit have a special shape.

Definition (Alternating circuits)

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

- variables or their negations as input
- d alternating layers of $\vee-$ and $\wedge-$ gates.
- \rightarrow negations are not counted in the depth.

It is useful to assume that AC^0 circuit have a special shape.

Definition (Alternating circuits)

- variables or their negations as input
- d alternating layers of $\vee-$ and $\wedge-$ gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

An alternating circuit of depth d is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- \rightarrow negations are not counted in the depth.
- ightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

Every AC^0 circuit of depth d can be transformed into an alternating circuit of depth d.

Proof

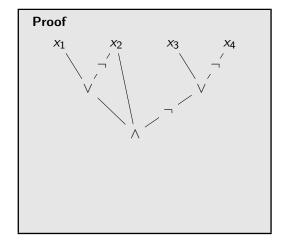
It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim



It is useful to assume that AC⁰ circuit have a special shape.

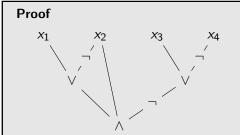
Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

Every AC^0 circuit of depth d can be transformed into an alternating circuit of depth d.



• Push negations to the leaves (potentially duplicating gates).

It is useful to assume that AC⁰ circuit have a special shape.

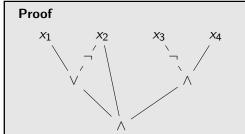
Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- \rightarrow negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

Every AC^0 circuit of depth d can be transformed into an alternating circuit of depth d.



• Push negations to the leaves (potentially duplicating gates).

It is useful to assume that AC⁰ circuit have a special shape.

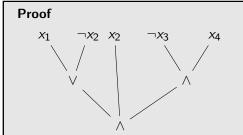
Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- \rightarrow negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

Every AC^0 circuit of depth d can be transformed into an alternating circuit of depth d.



• Push negations to the leaves (potentially duplicating gates).

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

- Push negations to the leaves (potentially duplicating gates).
- Fill with dummy gates between gates of the same type.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- ightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

- Push negations to the leaves (potentially duplicating gates).
- Fill with dummy gates between gates of the same type.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

- Push negations to the leaves (potentially duplicating gates).
- Fill with dummy gates between gates of the same type.
- Layer with dummy gates.

It is useful to assume that AC⁰ circuit have a special shape.

Definition (Alternating circuits)

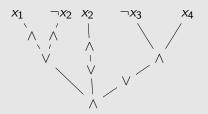
An alternating circuit of depth *d* is a circuit with

- variables or their negations as input
- d alternating layers of ∨− and ∧− gates.
- → negations are not counted in the depth.
- \rightarrow depth-2 alternating circuits are just DNFs and CNFs.
- \rightarrow the efficient circuits for Parity are already alternating.

Claim

Every AC^0 circuit of depth d can be transformed into an alternating circuit of depth d.

Proof



- Push negations to the leaves (potentially duplicating gates).
- Fill with dummy gates between gates of the same type.
- Layer with dummy gates.

Idea for lower bound for alternating circuits:

Idea for lower bound for alternating circuits:

• We have shown that alternating of depth 2 cannot compute Parity.

Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k-1 circuit.

Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k-1 circuit.

Claim (Switching)

Let C be an alternating circuit of size \geq 3. Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k - 1 circuit.

Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.

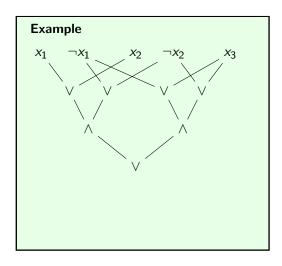
Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k-1 circuit.

Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.



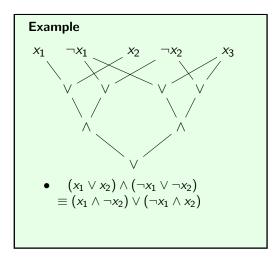
Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k-1 circuit.

Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.



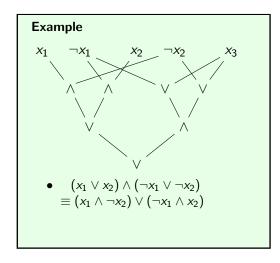
Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k - 1 circuit.

Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.



Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k-1 circuit.

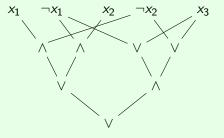
Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

Proof

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.

Example



- $\bullet \quad (\neg x_1 \lor x_3) \land (\neg x_2 \lor x_3)$ $\equiv (\neg x_1 \land \neg x_2) \lor (x_3)$

Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k - 1 circuit.

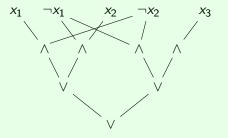
Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

Proof

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.

Example



- $(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$ $\equiv (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$
- $\bullet \quad (\neg x_1 \lor x_3) \land (\neg x_2 \lor x_3)$ $\equiv (\neg x_1 \land \neg x_2) \lor (x_3)$

Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k-1 circuit.

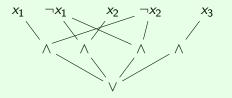
Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

Proof

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.

Example



- $(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$ $\equiv (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$
- $\bullet \quad (\neg x_1 \lor x_3) \land (\neg x_2 \lor x_3)$ $\equiv (\neg x_1 \land \neg x_2) \lor (x_3)$

Idea for lower bound for alternating circuits:

- We have shown that alternating of depth 2 cannot compute Parity.
- We want to show that if Parity is computed by a depth k circuits, then it can be computed by a depth k - 1 circuit.

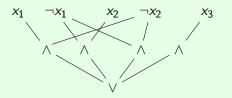
Claim (Switching)

Let C be an alternating circuit of size ≥ 3 . Replacing all CNFs at the leaves by equivalent DNFs reduces the depth by one.

Proof

- By alternation, all parents of the CNFs are ∨-gates.
- After replacement, we can merge these ∨ with the DNF ones.

Example



- $\bullet \quad (\neg x_1 \lor x_3) \land (\neg x_2 \lor x_3)$ $\equiv (\neg x_1 \land \neg x_2) \lor (x_3)$

Definition (t-CNF)

A *t*-CNF is a CNF with *t* clauses.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

 $(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$ has only DNFs of size $\geq 2^n$.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

$$(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$$
 has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

$$(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$$

has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \lor and \land gates can easily be fixed.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

$$(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$$
 has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \vee and \wedge gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables \boldsymbol{X} is a mapping

$$\rho: X \to \{0, 1, *\}.$$

 \rightarrow * means that the variable is unassigned.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

$$(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$$
 has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \lor and \land gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables \boldsymbol{X} is a mapping

$$\rho: X \to \{0, 1, *\}.$$

- \rightarrow * means that the variable is unassigned.
- \rightarrow for f a Boolean function over X, a restriction ρ defines a subfunction f_{ρ} .

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

$$(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$$
 has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \vee and \wedge gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables \boldsymbol{X} is a mapping

$$\rho: X \to \{0,1,*\}.$$

- \rightarrow * means that the variable is unassigned.
- \rightarrow for f a Boolean function over X, a restriction ρ defines a subfunction f_{ρ} .

Definition

A *I*-restriction is a restriction that assigns * to exactly *I* variables.

 $\rightarrow f_{\rho}$ has I variables for such ρ .

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

 $(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$ has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \vee and \wedge gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables X is a mapping

$$\rho: X \to \{0, 1, *\}.$$

- \rightarrow * means that the variable is unassigned.
- \rightarrow for f a Boolean function over X, a restriction ρ defines a subfunction f_{ρ} .

Definition

- A *I*-restriction is a restriction that assigns
- * to exactly / variables.
- $\rightarrow f_{\rho}$ has I variables for such ρ .
- \rightarrow we will draw such restrictions uniformly.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

 $(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$ has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \vee and \wedge gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables X is a mapping

$$\rho: X \to \{0, 1, *\}.$$

- \rightarrow * means that the variable is unassigned.
- \rightarrow for f a Boolean function over X, a restriction ρ defines a subfunction f_{ρ} .

Definition

A *I*-restriction is a restriction that assigns * to exactly *I* variables.

- $\rightarrow f_{\rho}$ has I variables for such ρ .
- \rightarrow we will draw such restrictions uniformly.

Definition (*t*-CNF and *s*-DNF)

A *t*-CNF is a CNF with *t* clauses.

A s-DNF is a DNF with s clauses.

Problem: Replacing a CNF by a DNF can lead to an exponential blow-up.

Example

 $(x_1 \lor x_2) \land (x_3 \lor x_4) \land \cdots \land (x_{2n-1} \lor x_{2n})$ has only DNFs of size $\geq 2^n$.

Solution: CNFs can be replaced by small DNFs with high probability after fixing some inputs randomly.

Intuition: \lor and \land gates can easily be fixed.

Definition (Restriction)

A restriction for a set of variables X is a mapping

$$\rho: X \to \{0, 1, *\}.$$

- \rightarrow * means that the variable is unassigned.
- \rightarrow for f a Boolean function over X, a restriction ρ defines a subfunction f_{ρ} .

Definition

A *I*-restriction is a restriction that assigns * to exactly *I* variables.

- $\rightarrow f_{\rho}$ has I variables for such ρ .
- \rightarrow we will draw such restrictions uniformly.

Definition (*t*-CNF and *s*-DNF)

A *t*-CNF is a CNF with *t* clauses. A *s*-DNF is a DNF with *s* clauses.

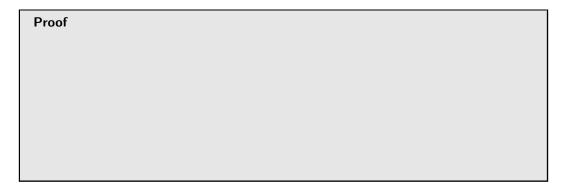
Theorem (Switching lemma)

For $0 \le p \le 1$ and f a Boolean function f with n variables that can be expressed as a t-CNF:

$$\mathbb{P}_{\rho}(f_{\rho} \text{ has no } s\text{-DNF}) \leq (8pt)^{s}$$
 where the probability is taken over all pn -restrictions.

 \rightarrow Admitted.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.



All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof

• By induction: we have proved the case k = 2 already.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

- By induction: we have proved the case k = 2 already.
- Assume a depth-(k+1) circuit of size S for Parity.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

- By induction: we have proved the case k = 2 already.
- Assume a depth-(k+1) circuit of size S for Parity.
- $\bullet~$ Wlog. the first layer has $\vee\text{-gates}.$

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$

- By induction: we have proved the case k = 2 already.
- Assume a depth-(k+1) circuit of size S for Parity.
- Wlog. the first layer has ∨-gates.
- We want to apply the switching lemma:
 - \rightarrow but the fan-in of the first layer can be big.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$

- By induction: we have proved the case k = 2 already.
- Assume a depth-(k+1) circuit of size S for Parity.
- Wlog. the first layer has ∨-gates.
- We want to apply the switching lemma:
 - \rightarrow but the fan-in of the first layer can be big.
- We proceed in two steps:
 - Step 1: fan-in reduction of the first layer.
 - **Step 2:** depth reduction.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$

- By induction: we have proved the case k = 2 already.
- Assume a depth-(k + 1) circuit of size S for Parity.
- Wlog. the first layer has ∨-gates.
- We want to apply the switching lemma:
 - \rightarrow but the fan-in of the first layer can be big.
- We proceed in two steps:
 - **Step 1:** fan-in reduction of the first layer.
 - **Step 2:** depth reduction.
- Key idea: Subfunctions of Parityare Parityitself or its negation.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

• The circuit has depth *k* + 1, size *S* and the first layer has ∨-gates.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- The gates of the first layer can be seen as 1-DNFs

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth *k* + 1, size *S* and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- The gates of the first layer can be seen as 1-DNFs
- We can apply the switching lemma with
 - t = 1
 - \bullet s=m
 - $p = \frac{1}{16}$

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- The gates of the first layer can be seen as 1-DNFs
- We can apply the switching lemma with
 - t = 1
 - \bullet s=m
 - $p = \frac{1}{16}$

 The probability that a chosen ∨-gate cannot be turned into a s-CNF is at most:

$$\leq (8pt)^s = \tfrac{1}{2^s} = \tfrac{1}{S^2}$$

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- The gates of the first layer can be seen as 1-DNFs
- We can apply the switching lemma with
 - t = 1
 - s = m
 - $p = \frac{1}{16}$

 The probability that a chosen ∨-gate cannot be turned into a s-CNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{5^2}$$

ightarrow Union bound: with probability < 1 at least one the gate of the first layer cannot be turned into a s-CNF.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- The gates of the first layer can be seen as 1-DNFs
- We can apply the switching lemma with
 - t = 1
 - s = m
 - $p = \frac{1}{16}$

 The probability that a chosen ∨-gate cannot be turned into a s-CNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{5^2}$$

- ightarrow Union bound: with probability < 1 at least one the gate of the first layer cannot be turned into a *s*-CNF.
- ightarrow There is a *pn*-restriction for which all \lor -gates can be turned into *s*-CNFs.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 1: fan-in reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- The gates of the first layer can be seen as 1-DNFs
- We can apply the switching lemma with
 - t = 1
 - s = m
 - $p = \frac{1}{16}$

 The probability that a chosen ∨-gate cannot be turned into a s-CNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{5^2}$$

- \rightarrow Union bound: with probability < 1 at least one the gate of the first layer cannot be turned into a *s*-CNF.
- \rightarrow There is a *pn*-restriction for which all \lor -gates can be turned into *s*-CNFs.
- After collasping the ∧-gates, we have a circuit for Parity with:
 - depth *k* + 1
 - size at most S^2
 - fan-in of the first layer at most m
 - has $\frac{n}{16}$ variables.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 2: depth reduction)

 The circuit has depth k + 1, size S and the first layer has ∨-gates.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- We can apply the switching lemma to the CNFs of the second layer with
 - t = m
 - s = m
 - $p = \frac{1}{16m}$

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- We can apply the switching lemma to the CNFs of the second layer with
 - t = m
 - s = m
 - $p=\frac{1}{16m}$

• The probability that a chosen ∧-gate cannot be turned into a s-DNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{S^2}$$

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- We can apply the switching lemma to the CNFs of the second layer with
 - t = m
 - s = m
 - $p = \frac{1}{16m}$

- The probability that a chosen ∧-gate cannot be turned into a s-DNF is at most:
 ≤ (8pt)^s = ½ = ½
 - $\leq (opt)^r = \frac{1}{2^s} = \frac{1}{5^2}$ \rightarrow Union bound: with probability < 1 at least one the gate of the second layer cannot be turned into a s-DNF.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- We can apply the switching lemma to the CNFs of the second layer with
 - t = m
 - s = m
 - $p=\frac{1}{16m}$

 The probability that a chosen ∧-gate cannot be turned into a s-DNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{5^2}$$

- \rightarrow Union bound: with probability < 1 at least one the gate of the second layer cannot be turned into a s-DNF.
- \rightarrow There is a *pn*-restriction for which all \land -gates can be turned into *s*-DNFs.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- We can apply the switching lemma to the CNFs of the second layer with
 - t = m
 - s = m
 - $p = \frac{1}{16m}$

 The probability that a chosen ∧-gate cannot be turned into a s-DNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{5^2}$$

- \rightarrow Union bound: with probability < 1 at least one the gate of the second layer cannot be turned into a s-DNF.
- \rightarrow There is a *pn*-restriction for which all \land -gates can be turned into *s*-DNFs.
- After collasping the ∧-gates, we have a circuit for Parity with:
 - depth *k*
 - size at most S^2
 - has $\frac{n}{16^2m}$ variables.

All depth-k circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{k-1}})}$.

Proof (Step 2: depth reduction)

- The circuit has depth k + 1, size S and the first layer has ∨-gates.
- Set $m = 2 \log S$.
- We can apply the switching lemma to the CNFs of the second layer with
 - t = m
 - s = m
 - $p = \frac{1}{16m}$

 The probability that a chosen ∧-gate cannot be turned into a s-DNF is at most:

$$\leq (8pt)^s = \frac{1}{2^s} = \frac{1}{S^2}$$

- \rightarrow Union bound: with probability < 1 at least one the gate of the second layer cannot be turned into a s-DNF.
- \rightarrow There is a *pn*-restriction for which all \land -gates can be turned into *s*-DNFs.
- After collasping the ∧-gates, we have a circuit for Parity with:
 - depth *k*
 - size at most S^2
 - has $\frac{n}{16^2m}$ variables.
- By induction: $S^2 \leq 2^{\left(\frac{n}{16^2m}\right)^{1/(k-1)}}$, which gives $\log(S) \leq c_k n^{\frac{1}{k}}$ for a constant c_k .

Proof 2: Polynomial approximation

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

 \rightarrow circuits without sharing

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- $\rightarrow \ \mathsf{Not} \ \mathsf{helping}$

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- $\rightarrow \ \mathsf{Not} \ \mathsf{helping}$
- \rightarrow We want a field.

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- $\rightarrow \ \mathsf{Not} \ \mathsf{helping}$
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

$$0+0=1+1=0$$

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

$$0 + 0 = 1 + 1 = 0$$

 \rightarrow Parity is $\sum_{i=1}^{n} x_i$

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 \rightarrow vve want a field. 2nd **try:** polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

$$0+0=1+1=0$$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

 $0+0=1+1=0$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3

Polynomials are simpler objects than circuits.

→ algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

 $0+0=1+1=0$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3

 \rightarrow What do we do with 2?

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

 $0+0=1+1=0$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3 \rightarrow What do we do with 2?

Definition

A Boolean function $f(\overline{x})$ is represented by a polynomial $p(\overline{x})$ over \mathbb{F}_3 if $f(\overline{a}) = p(\overline{a})$ for all \overline{a} with only 0 and 1.

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- \rightarrow circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

 $0+0=1+1=0$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3 \rightarrow What do we do with 2?

Definition

A Boolean function $f(\overline{x})$ is represented by a polynomial $p(\overline{x})$ over \mathbb{F}_3 if $f(\overline{a}) = p(\overline{a})$ for all \overline{a} with only 0 and 1.

Example

$$\mathsf{Parity} = (\prod_{i=1}^n (x_i + 1)) - 1$$

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- → circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

 $0+0=1+1=0$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3 \rightarrow What do we do with 2?

Definition

A Boolean function $f(\overline{x})$ is represented by a polynomial $p(\overline{x})$ over \mathbb{F}_3 if $f(\overline{a}) = p(\overline{a})$ for all \overline{a} with only 0 and 1.

Example

Parity =
$$(\prod_{i=1}^{n} (x_i + 1)) - 1$$

- \rightarrow We look at the degree.
- ightarrow It looks that Parity needs high degree.

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- → circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1$$

 $0+0=1+1=0$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3 \rightarrow What do we do with 2?

Definition

A Boolean function $f(\overline{x})$ is represented by a polynomial $p(\overline{x})$ over \mathbb{F}_3 if $f(\overline{a}) = p(\overline{a})$ for all \overline{a} with only 0 and 1.

Example

$$Parity = (\prod_{i=1}^{n} (x_i + 1)) - 1$$

- \rightarrow We look at the degree.
- ightarrow It looks that Parity needs high degree.

Example

$$abla x = 1 - x$$
 $abla_{i=1}^{n} x_i = 1 - \prod_{i=1}^{n} (2x_i + 1)$

Polynomials are simpler objects than circuits.

 \rightarrow algebraic instead of combinatoric.

Proof Idea

- 1) Capture functions computed by AC⁰ circuits by simple polynomials.
- 2) Show that Parity cannot be captured by such simple polynomials.

1st try: Boolean polynomials.

$$+ = \lor \qquad \qquad \times = \land$$

- → circuits without sharing
- \rightarrow Not helping
- \rightarrow We want a field.

 2^{nd} try: polynomials over \mathbb{F}_2 .

$$0+1=1+0=1 \\ 0+0=1+1=0$$

- \rightarrow Parity is $\sum_{i=1}^{n} x_i$
- \rightarrow One of the simplest polynomial.
- \rightarrow Not a chance to have 2).

 3^{rd} try: polynomials over $\mathbb{F}_3 = \{0, 1, 2\}$. + and \times are the usual mod 3

 \rightarrow What do we do with 2?

Definition

A Boolean function $f(\overline{x})$ is represented by a polynomial $p(\overline{x})$ over \mathbb{F}_3 if $f(\overline{a}) = p(\overline{a})$ for all \overline{a} with only 0 and 1.

Example

$$Parity = \left(\prod_{i=1}^{n} (x_i + 1)\right) - 1$$

- \rightarrow We look at the degree.
- ightarrow It looks that Parity needs high degree.

Example

$$abla x = 1 - x$$
 $abla_{i=1}^{n} x_i = 1 - \prod_{i=1}^{n} (2x_i + 1)$

 \rightarrow Seems that \lor also needs high degree...

Last try: the approximation technique

Idea: Relax the notion of representation.

 \rightarrow we will approximate circuits with polynomials over $\mathbb{F}_3.$

Proof Idea

- Approximate functions computed by AC⁰ circuits by low-degree polynomials over F₃.
- 2) Parity cannot be approximated by low-degree polynomials over \mathbb{F}_3 .

Approximate means being correct on many inputs.

Definition

For $f(\overline{x})$ a function with n inputs and p a polynomial:

$$\mathsf{distance}(f,p) = |\{\overline{a} \in \{0,1\}^n \mid p(\overline{a}) \neq f(\overline{a})\}|$$

Formalization of 1):

Lemma

Let C be a circuit of depth d and size M that computes a function f.

Then, for $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

 \rightarrow proved later.

Formalization of 2):

Lemma

There is a constant c>0 such that every polynomial of degree $\leq \sqrt{n}$ satisfies:

distance(Parity,
$$p$$
) $\geq c \cdot 2^n$.

→ Admitted.

$\mathsf{Parity} \notin \mathsf{AC}^0$

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{2d}})}$.

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{2d}})}$.

Lemma

Let C be a circuit of depth d and size M that computes a function f.

Then, for $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

 $distance(f, p) \leq M \cdot 2^{n-r}$.

Lemma

There is a constant c>0 such that every polynomial of degree $\leq \sqrt{n}$ satisfies:

 $distance(Parity, p) \ge c \cdot 2^n$.

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{2d}})}$.

Lemma

Let C be a circuit of depth d and size M that computes a function f.

Then, for $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

 $distance(f, p) \leq M \cdot 2^{n-r}$.

Lemma

There is a constant c>0 such that every polynomial of degree $\leq \sqrt{n}$ satisfies:

 $distance(Parity, p) \ge c \cdot 2^n$.

Proof

• Let C be a circuit for Parity of depth d and size M.

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{2d}})}$.

Lemma

Let C be a circuit of depth d and size M that computes a function f.

Then, for $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

 $distance(f, p) \leq M \cdot 2^{n-r}$.

Lemma

There is a constant c>0 such that every polynomial of degree $\leq \sqrt{n}$ satisfies:

distance(Parity, p) $\geq c \cdot 2^n$.

Proof

- Let C be a circuit for Parity of depth d and size M.
- With $r = n^{\frac{1}{2d}}/2$: there is p of degree $\leq \sqrt{n}$ such that: distance(Parity, p) $\leq M \cdot 2^{n-n^{1/2d}/2}$.

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{2d}})}$.

Lemma

Let C be a circuit of depth d and size M that computes a function f.

Then, for $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

 $distance(f, p) \leq M \cdot 2^{n-r}$.

Lemma

There is a constant c>0 such that every polynomial of degree $\leq \sqrt{n}$ satisfies:

distance(Parity, p) $\geq c \cdot 2^n$.

Proof

- Let C be a circuit for Parity of depth d and size M.
- With $r = n^{\frac{1}{2d}}/2$: there is p of degree $\leq \sqrt{n}$ such that: distance(Parity, p) $\leq M \cdot 2^{n-n^{1/2d}/2}$.
- distance(Parity, p) $\geq c \cdot 2^n$.

Theorem (Razborov, Smolenski)

All depth-d circuits for Parity have size at least $2^{\Omega(n^{\frac{1}{2d}})}$.

Lemma

Let C be a circuit of depth d and size M that computes a function f.

Then, for $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

 $distance(f, p) \leq M \cdot 2^{n-r}$.

Lemma

There is a constant c>0 such that every polynomial of degree $\leq \sqrt{n}$ satisfies:

 $\mathsf{distance}(\mathsf{Parity},p) \geq c \cdot 2^n.$

Proof

- Let C be a circuit for Parity of depth d and size M.
- With $r = n^{\frac{1}{2d}}/2$: there is p of degree $\leq \sqrt{n}$ such that: distance(Parity, p) $\leq M \cdot 2^{n-n^{1/2d}/2}$.
- distance(Parity, p) $\geq c \cdot 2^n$.
- Thus, $c \cdot 2^n \le M \cdot 2^{n-n^{1/2d}/2}$.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down.

 \rightarrow Wlog. there are no $\land\text{-gates}.$

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $\operatorname{distance}(\lor, p_{\lor}) \le 2^{n-r}$

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $\operatorname{distance}(\lor, p_{\lor}) \le 2^{n-r}$

→ Proof next slide

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $\operatorname{distance}(\lor, p_{\lor}) \le 2^{n-r}$

 \rightarrow Proof next slide

Proof

We approximate inductively every gate g by p_g :

- An input gate x_i by x_i.
 A ¬-gate ¬h by 1 − p_h.
- A \vee -gate $\bigvee_{k=1}^{m} h_k$ b $p_{\vee}(p_{h_1}, \dots, p_{h_m}).$

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down.

→ Wlog. there are no ∧-gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

→ Proof next slide

Proof

We approximate inductively every gate g by p_g :

- An input gate x_i by x_i .
- A \neg -gate $\neg h$ by $1 p_h$.
- A \vee -gate $\bigvee_{k=1}^{m} h_k$ by $p_{\vee}(p_{h_1}, \dots, p_{h_m})$.

Degree bound:

 $\bullet \ \, \neg\text{-gates}$ do not increase the degree.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\vee} of degree $\le 2r$ such that $distance(\vee, p_{\vee}) \le 2^{n-r}$

→ Proof next slide

Proof

We approximate inductively every gate g by p_g :

- An input gate x_i by x_i .
- A \neg -gate $\neg h$ by $1 p_h$.
- A \vee -gate $\bigvee_{k=1}^{m} h_k$ by $p_{\vee}(p_{h_1}, \dots, p_{h_m})$.

Degree bound:

- ¬-gates do not increase the degree.
- V-gates multiply the degree by 2r: $\deg(p_g) \leq 2r \cdot \max(\deg(p_{h_k}))$.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

→ Proof next slide

Proof

We approximate inductively every gate g by p_g :

- An input gate x_i by x_i .
- A \neg -gate $\neg h$ by $1 p_h$.
- A \vee -gate $\bigvee_{k=1}^{m} h_k$ by $p_{\vee}(p_{h_1}, \dots, p_{h_m})$.

Degree bound:

- ¬-gates do not increase the degree.
- V-gates multiply the degree by 2r: deg(p_g) ≤ 2r · max(deg(p_{h_k})).
- For a gate at depth i, $\deg(g) \le (2r)^i$.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

 \rightarrow Proof next slide

Proof

We approximate inductively every gate g by p_g :

- An input gate x_i by x_i .
- A \neg -gate $\neg h$ by $1 p_h$.
- A \vee -gate $\bigvee_{k=1}^{m} h_k$ by $p_{\vee}(p_{h_1}, \ldots, p_{h_m})$.

Degree bound:

- ¬-gates do not increase the degree.
- V-gates multiply the degree by 2r: deg(p_g) ≤ 2r · max(deg(p_{h_k})).
- For a gate at depth i, $\deg(g) \leq (2r)^i$.

Distance bound:

• ¬-gates do not introduce errors.

For $1 \le r \le n$, there is a polynomial p of degree $\le (2r)^d$ such that:

$$distance(f, p) \leq M \cdot 2^{n-r}$$
.

Proof by induction, we approximate gates in the circuit and combine them top-down. \rightarrow Wlog. there are no \land -gates.

Claim

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

 \rightarrow Proof next slide

Proof

We approximate inductively every gate g by p_g :

- An input gate x_i by x_i .
- A \neg -gate $\neg h$ by $1 p_h$.
- A \vee -gate $\bigvee_{k=1}^{m} h_k$ by $p_{\vee}(p_{h_1}, \dots, p_{h_m})$.

Degree bound:

- ¬-gates do not increase the degree.
- V-gates multiply the degree by 2r: deg(p_g) ≤ 2r · max(deg(p_{he})).
- For a gate at depth i, $\deg(g) \leq (2r)^i$.

Distance bound:

- ¬-gates do not introduce errors.
- for a \vee -gate, assume p_{h_k} is wrong for at most $M_k \cdot 2^{n-r}$ inputs, where M_k is the size of the subcircuit of h_k .

Then p_g is wrong for at most $(M_1 + \cdots + M_k + 1) \cdot 2^{n-r}$ inputs.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} :

$$\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$$

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between *p* and *∨*:

$$X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$$

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \forall : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \forall (\overline{a})}.$

$$X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{I}_{p(\overline{a}) \neq \vee(\overline{a})}.$$
 Its expectancy is
$$\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$$

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \forall : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \forall (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

• For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1 x_1 + \dots + d_n x_n)^2$

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between *p* and ∨:

$$\begin{split} X &= \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}. \\ \text{Its expectancy is} \\ &\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}. \end{split}$$

4) There is a
$$\overline{c}$$
 such that distance $(\vee, p) \leq 2^{n-r}$.

• For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \dots + d_nx_n)^2$ \rightarrow Always in $\{0, 1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}$.
- Define the random variable for the distance between p and √:

$$\begin{split} X &= \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}. \\ \text{Its expectancy is} \\ &\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}. \end{split}$$

4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \dots + d_nx_n)^2$ \rightarrow Always in $\{0, 1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$.
- Fix some \overline{a} :

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}$.
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance(\vee , p) $\leq 2^{n-r}$.

- For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \dots + d_nx_n)^2$ \rightarrow Always in $\{0, 1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$.
- Fix some \overline{a} :
- if $\forall (\overline{a}) = 0$ then $p(\overline{a}) = 0$, hence we have 2).

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \dots + d_nx_n)^2$ \rightarrow Always in $\{0, 1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$.
- Fix some \overline{a} :
- if $\forall (\overline{a}) = 0$ then $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a}) = 1$, then $p(\overline{a}) = (d_{i_1} + \cdots + d_{i_m})^2$ for some indices.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\lor, p) \le 2^{n-r}$.

- For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \dots + d_nx_n)^2$ \rightarrow Always in $\{0, 1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$.
- Fix some \overline{a} :
- if $\forall (\overline{a}) = 0$ then $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a}) = 1$, then $p(\overline{a}) = (d_{i_1} + \cdots + d_{i_m})^2$ for some indices.
 - → the components are independent thus the sum has the same probability of being 0,1 or 2.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\lor, p) \le 2^{n-r}$.

- For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \dots + d_nx_n)^2$ \rightarrow Always in $\{0, 1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$.
- Fix some \overline{a} :
- if $\forall (\overline{a}) = 0$ then $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a}) = 1$, then $p(\overline{a}) = (d_{i_1} + \cdots + d_{i_m})^2$ for some indices.
 - \rightarrow the components are independent thus the sum has the same probability of being 0,1 or 2.
 - \rightarrow Thus we have 2).

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that $distance(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \bar{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] < 3^{-r}$.
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is
 - $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}$.
- 4) There is a \overline{c} such that $distance(\vee, p) \leq 2^{n-r}$.

- For $\overline{c} \in \mathbb{F}_3^n$ define: $p(\overline{x}) = (c_1x_1 + \cdots + d_nx_n)^2$ \rightarrow Always in $\{0,1\}$: $0^2 = 0$ and $1^2 = 2^2 = 1$
- Fix some \overline{a} :
- if $\forall (\overline{a}) = 0$ then $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a})=1$, then $p(\overline{a}) = (d_{i_1} + \cdots + d_{i_m})^2$ for some indices
 - → the components are independent thus the sum has the same probability of being 0,1 or 2.
 - \rightarrow Thus we have 2).
- This proves the claim for r=1.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

Use probability amplification.

• Set N = rn, and define r polynomials p_1, \ldots, p_r as before.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

 \rightarrow The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- Define the random variable for the distance between p and ∨:
 X = ∑_{ā∈{0,1}}, 1 p(ō)≠∨(ō).
 - Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}$.
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before.
 - \rightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}$.
- 3) Define the random variable for the distance between *p* and ∨:

$$\begin{split} X &= \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}. \\ \text{Its expectancy is} \\ &\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}. \end{split}$$

4) There is a \overline{c} such that distance(\vee , p) $\leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before.
 - \rightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x})).$

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

 \rightarrow The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}$.
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before.
 - \rightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x}))$. \rightarrow Evaluates to 0 iff all q_i evaluates to 0.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before. \rightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x}))$. \rightarrow Evaluates to 0 iff all q_i evaluates to 0.
- Fix some \overline{a} :

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}$.
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N=rn, and define r polynomials p_1,\ldots,p_r as before. \rightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x}))$. \rightarrow Evaluates to 0 iff all q_i evaluates to 0.
- Fix some \overline{a} :
- if $\vee(\bar{a}) = 0$ then all $p_i(\bar{a}) = 0$ and thus $p(\bar{a}) = 0$, hence we have 2).

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before. \rightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x})).$ \rightarrow Evaluates to 0 iff all q_i evaluates to 0.
- Fix some \overline{a} :
- if $\vee(\overline{a}) = 0$ then all $p_i(\overline{a}) = 0$ and thus $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a}) = 1$, then $\mathbb{P}[p(\overline{a}) \neq 1] = \prod_r \mathbb{P}[p_r(\overline{a}) \neq 1]$ by independence.

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}.$
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before.
 - ightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x}))$. \rightarrow Evaluates to 0 iff all q_i evaluates to 0.
- Fix some \overline{a} :
- if $\vee(\overline{a}) = 0$ then all $p_i(\overline{a}) = 0$ and thus $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a})=1$, then $\mathbb{P}[p(\overline{a})\neq 1]=\prod_r \mathbb{P}[p_r(\overline{a})\neq 1]$ by independence.
 - \rightarrow Thus we have 2).

For $1 \le r \le n$, there is a polynomial p_{\lor} of degree $\le 2r$ such that distance $(\lor, p_{\lor}) \le 2^{n-r}$

→ The return of the probabilistic method.

Proof

- 1) Define a polynomial p for all $\overline{c} \in \mathbb{F}_3^N$ uniformly drawn.
- 2) Show that for all \overline{a} : $\mathbb{P}_{\overline{c}}[p(\overline{a}) \neq \vee (\overline{a})] \leq 3^{-r}$.
- 3) Define the random variable for the distance between p and \vee : $X = \sum_{\overline{a} \in \{0,1\}^n} \mathbb{1}_{p(\overline{a}) \neq \vee (\overline{a})}.$ Its expectancy is $\leq \sum_{\overline{a} \in \{0,1\}^n} 3^{-r} \leq 2^{n-r}.$
- 4) There is a \overline{c} such that distance $(\vee, p) \leq 2^{n-r}$.

- Set N = rn, and define r polynomials p_1, \ldots, p_r as before.
 - ightarrow depends on $\overline{c} \in \mathbb{F}_3^N$.
- Define $p(\overline{x}) = 1 \prod_{i=1}^{r} (1 q_i(\overline{x}))$. \rightarrow Evaluates to 0 iff all q_i evaluates to 0.
- Fix some \overline{a} :
- if $\vee(\overline{a}) = 0$ then all $p_i(\overline{a}) = 0$ and thus $p(\overline{a}) = 0$, hence we have 2).
- if $\vee(\overline{a})=1$, then $\mathbb{P}[p(\overline{a})\neq 1]=\prod_r \mathbb{P}[p_r(\overline{a})\neq 1]$ by independence.
 - \rightarrow Thus we have 2).
- This proves the claim for any r.

We have seen:

• Reduction from ADDⁿ to Parity.

We have seen:

- Reduction from ADDⁿ to Parity.
- Every regular language is in NC¹.

We have seen:

- Reduction from ADDⁿ to Parity.
- Every regular language is in NC¹.
- Parity can be rather efficiently computed but we have one of the highlights of complexity:

Theorem

 $\mathsf{Parity} \notin \mathsf{AC}^0$

We have seen:

- Reduction from ADDⁿ to Parity.
- Every regular language is in NC¹.
- Parity can be rather efficiently computed but we have one of the highlights of complexity:

Theorem

Parity $\notin AC^0$

- Two different proofs:
 - Reducing the depth iteratively with random restrictions: switching lemma.
 - Approximate AC⁰ circuits by low-degree polynomials.

Boolean circuits and regular languages

Corentin Barloy Michael Walter Thomas Zeume

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

 $\rightarrow \text{ regular languages are everywhere (linguistics, text processing/editing, bioinformatics, } \ldots)$

Introduction

Why studying regular languages from the point-of-view of circuit complexity?

- $\rightarrow \ \text{regular languages are everywhere (linguistics, text processing/editing, bioinformatics, } \ldots)$
 - \rightarrow optimizing them is important

Why studying regular languages from the point-of-view of circuit complexity?

- $\rightarrow \text{regular languages are everywhere (linguistics, text processing/editing, bioinformatics, } \ldots)$
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel

Why studying regular languages from the point-of-view of circuit complexity?

- $\rightarrow \text{regular languages are everywhere (linguistics, text processing/editing, bioinformatics, } \ldots)$
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- → Many classes's behaviours are reflected on the regular languages it computes.

Why studying regular languages from the point-of-view of circuit complexity?

- $\rightarrow \text{regular languages are everywhere (linguistics, text processing/editing, bioinformatics, } \ldots)$
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- \rightarrow Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Why studying regular languages from the point-of-view of circuit complexity?

- $\rightarrow \text{ regular languages are everywhere (linguistics, text processing/editing, bioinformatics, } \ldots)$
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- \rightarrow Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Separation

Completness

Why studying regular languages from the point-of-view of circuit complexity?

- ightarrow regular languages are everywhere (linguistics, text processing/editing, bioinformatics, \ldots)
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- \rightarrow Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Separation

Definition (Separator)

A separator for a class C_2 from a class C_1 is a language L that belongs in C_2/C_1 .

Completness

Why studying regular languages from the point-of-view of circuit complexity?

- ightarrow regular languages are everywhere (linguistics, text processing/editing, bioinformatics, \ldots)
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- \rightarrow Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Separation

Definition (Separator)

A separator for a class C_2 from a class C_1 is a language L that belongs in C_2/C_1 .

 \rightarrow We want to find separators to compare the expressive power of classes.

Completness

Why studying regular languages from the point-of-view of circuit complexity?

- ightarrow regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- \rightarrow Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Separation

Definition (Separator)

A separator for a class C_2 from a class C_1 is a language L that belongs in C_2/C_1 .

ightarrow We want to find separators to compare the expressive power of classes.

Completness

Definition (Reduction)

A projection from L_1 to L_2 is a circuit that computes L_1 with a single gate labelled by L_2 . It is polynomial if the fan-in of the gate is polynomial.

Why studying regular languages from the point-of-view of circuit complexity?

- ightarrow regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- \rightarrow Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Separation

Definition (Separator)

A separator for a class C_2 from a class C_1 is a language L that belongs in C_2/C_1 .

→ We want to find separators to compare the expressive power of classes.

Completness

Definition (Reduction)

A projection from L_1 to L_2 is a circuit that computes L_1 with a single gate labelled by L_2 . It is polynomial if the fan-in of the gate is polynomial.

Definition (Completeness)

A language L is complete under projections for a class C if $L \in C$ and there is a projection from every language in C to L.

Why studying regular languages from the point-of-view of circuit complexity?

- ightarrow regular languages are everywhere (linguistics, text processing/editing, bioinformatics, ...)
 - \rightarrow optimizing them is important
 - → complexity under P: sequential vs parallel
- → Many classes's behaviours are reflected on the regular languages it computes. (under NC¹.)

Separation

Definition (Separator)

A separator for a class C_2 from a class C_1 is a language L that belongs in C_2/C_1 .

→ We want to find separators to compare the expressive power of classes.

Completness

Definition (Reduction)

A projection from L_1 to L_2 is a circuit that computes L_1 with a single gate labelled by L_2 . It is polynomial if the fan-in of the gate is polynomial.

Definition (Completeness)

A language L is complete under projections for a class C if $L \in C$ and there is a projection from every language in C to L.

Many separators and complete languages can be chosen regular.

Importance of regular languages

Parity is a regular separator for NC^1 from AC^0 .

Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Parity is a regular separator for NC¹ from AC⁰.

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Theorem (Razborov, Smolenski)

For primes $p \neq q$, Mod_q is not in $ACC^0[p]$.

Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Theorem (Razborov, Smolenski)

For primes $p \neq q$, Mod_q is not in $\operatorname{ACC}^0[p]$.

- ightarrow Similar proof as last lecture.
- → Gives regular separators for $AC^0 \subseteq ACC^0[p] \subseteq NC^1$ for a prime p.

Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Theorem (Razborov, Smolenski)

For primes $p \neq q$, Mod_q is not in $\operatorname{ACC}^0[p]$.

- \rightarrow Similar proof as last lecture.
- \rightarrow Gives regular separators for $AC^0 \subsetneq ACC^0[p] \subsetneq NC^1$ for a prime p.

Now is $ACC^0 = NC^1$?

Parity is a regular separator for NC¹ from AC⁰.

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

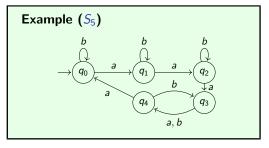
For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Theorem (Razborov, Smolenski)

For primes $p \neq q$, Mod_q is not in $ACC^0[p]$.

- \rightarrow Similar proof as last lecture.
- \rightarrow Gives regular separators for $AC^0 \subsetneq ACC^0[p] \subsetneq NC^1$ for a prime p.

Now is $ACC^0 = NC^1$? We do not know but:



Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

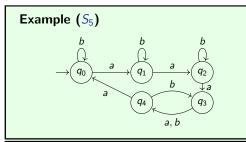
For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Theorem (Razborov, Smolenski)

For primes $p \neq q$, Mod_q is not in $\operatorname{ACC}^0[p]$.

- \rightarrow Similar proof as last lecture.
- \rightarrow Gives regular separators for $AC^0 \subsetneq ACC^0[p] \subsetneq NC^1$ for a prime p.

Now is $ACC^0 = NC^1$? We do not know but:



Theorem (Barrington)

 S_5 is complete under projections for NC^1 .

Parity is a regular separator for NC^1 from AC^0 .

 \rightarrow Can we express all of NC¹ using Parity gates for free?

Definition (Modular languages)

For $m \in \mathbb{N}$, the language of binary strings with an number of 1 divisible by m is denoted by Mod_m .

Definition (AC⁰ with counting)

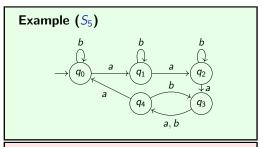
For $m \in \mathbb{N}$, $ACC^0[m]$ is the class of languages computable by an AC^0 circuits with some gates labelled by Mod_m . If it can use any Mod_m gates, it gives the class ACC^0 .

Theorem (Razborov, Smolenski)

For primes $p \neq q$, Mod_q is not in $\operatorname{ACC}^0[p]$.

- → Similar proof as last lecture.
- \rightarrow Gives regular separators for $AC^0 \subsetneq ACC^0[p] \subsetneq NC^1$ for a prime p.

Now is $ACC^0 = NC^1$? We do not know but:



Theorem (Barrington)

 S_5 is complete under projections for NC^1 .

 \rightarrow If there is a separator for NC¹ from ACC⁰, then there is one regular.

Below AC^0

Let us look at the depth hierarchy of AC^0 .

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow AC^0 = \bigcup_i \Sigma_i = \bigcup_i \Pi_i$$

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0*10*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow AC^0 = \bigcup_i \Sigma_i = \bigcup_i \Pi_i$$

Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

 \rightarrow AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$ Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0*10*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

- \rightarrow proof next slide.
- \rightarrow Another regular languages that are complete for a natural class.

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

- \rightarrow proof next slide.
- ightarrow Another regular languages that are complete for a natural class.

Do they also separates the hierarchies?

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

- \rightarrow proof next slide.
- ightarrow Another regular languages that are complete for a natural class.

Do they also separates the hierarchies?

Theorem (Sipser, Håstad)

 O_d is not in $\Sigma_{d-1} \cup \Pi_d$. A_d is not in $\Sigma_d \cup \Pi_{d-1}$.

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

- \rightarrow proof next slide.
- \rightarrow Another regular languages that are complete for a natural class.

Do they also separates the hierarchies?

Theorem (Sipser, Håstad)

 O_d is not in $\Sigma_{d-1} \cup \Pi_d$. A_d is not in $\Sigma_d \cup \Pi_{d-1}$.

ightarrow proof by switching lemma

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \sum_{d+1}^* \#_d A_d \#_d \sum_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

- \rightarrow proof next slide.
- ightarrow Another regular languages that are complete for a natural class.

Do they also separates the hierarchies?

Theorem (Sipser, Håstad)

 O_d is not in $\Sigma_{d-1} \cup \Pi_d$. A_d is not in $\Sigma_d \cup \Pi_{d-1}$.

- ightarrow proof by switching lemma
- \rightarrow Unlike Parity, random restrictions easily make O_d and A_d trivial.

Let us look at the depth hierarchy of AC⁰.

Definition

For $d \in \mathbb{N}$, the class of languages computed by alternating circuits of polynomial size and depth d with an output \vee -gate (resp. \wedge -gate) is denoted Σ_d (resp. Π_d).

$$\rightarrow$$
 AC⁰ = $\bigcup_i \Sigma_i = \bigcup_i \Pi_i$
Are some of these classes equal?

Definition

We define regular languages over an alphabet $\Sigma_d = \{0, 1, \#_1, \dots, \#_{d-1}\}.$

- $O_1 = 0^*10^*$
- $A_1 = 1^*$
- $O_{d+1} = \Sigma_{d+1}^* \#_d A_d \#_d \Sigma_{d+1}^*$
- $A_{d+1} = (\#_d O_d)^* \#_d$

$$\rightarrow O_d = \Sigma_d^*/A_d$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

- \rightarrow proof next slide.
- ightarrow Another regular languages that are complete for a natural class.

Do they also separates the hierarchies?

Theorem (Sipser, Håstad)

 O_d is not in $\Sigma_{d-1} \cup \Pi_d$. A_d is not in $\Sigma_d \cup \Pi_{d-1}$.

- ightarrow proof by switching lemma
- \rightarrow Unlike Parity, random restrictions easily make O_d and A_d trivial.
- \rightarrow We need to draw random restrictions with a carefully chosen distribution.

Proof of completeness

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

Proof of completeness

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

• By induction:

Proof of completeness

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

- By induction:
- ${\it O}_1$ is the \lor function and ${\it A}_1$ is the \land function.

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

- By induction:
- O_1 is the \vee function and A_1 is the \wedge function.
- Let C_d be a circuit in Π_d for A_d .

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

- By induction:
- O_1 is the \vee function and A_1 is the \wedge function.
- Let C_d be a circuit in Π_d for A_d .
- Then O_{d+1} can be computed by:

$$\bigvee_{i < j} \#_d(i) \wedge \#_d(j) \wedge C_d[i, j]$$

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

- By induction:
- \mathcal{O}_1 is the \vee function and A_1 is the \wedge function.
- Let C_d be a circuit in Π_d for A_d .
- Then O_{d+1} can be computed by:

$$\bigvee_{i < j} \#_d(i) \wedge \#_d(j) \wedge C_d[i, j]$$

• The extra \wedge are absorbed by C_d

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

- By induction:
- O_1 is the \vee function and A_1 is the \wedge function.
- Let C_d be a circuit in Π_d for A_d .
- Then O_{d+1} can be computed by:

$$\bigvee_{i < j} \#_d(i) \wedge \#_d(j) \wedge C_d[i, j]$$

- The extra \wedge are absorbed by C_d
- There is a quadratic number of poly size circuits.

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are in Σ_d)

- By induction:
- O_1 is the \vee function and A_1 is the \wedge function.
- Let C_d be a circuit in Π_d for A_d .
- Then O_{d+1} can be computed by:

$$\bigvee_{i < j} \#_d(i) \wedge \#_d(j) \wedge C_d[i, j]$$

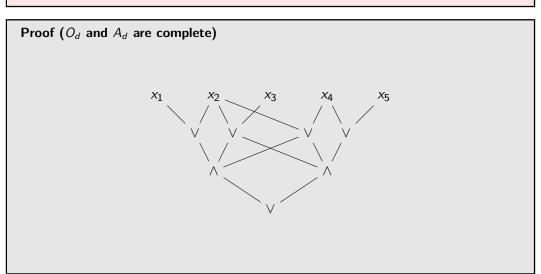
- The extra \wedge are absorbed by C_d
- There is a quadratic number of poly size circuits.
- A_d is the complement of O_d : the negation of that circuit gives a Π_d circuit for A_d .

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Theorem

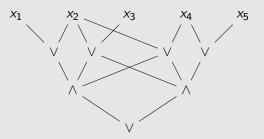
 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).



Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

Proof (O_d and A_d are complete)

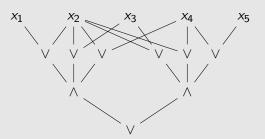


ullet Remove sharing. o remains of poly size

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).

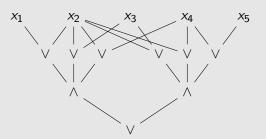
Proof (O_d and A_d are complete)



ullet Remove sharing. o remains of poly size

Theorem

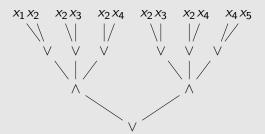
 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).



- Remove sharing. → remains of poly size
- Duplicate and order variables.

Theorem

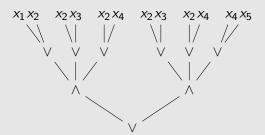
 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).



- Remove sharing. → remains of poly size
- Duplicate and order variables.

Theorem

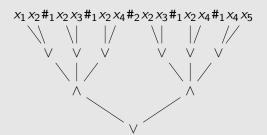
 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).



- Remove sharing. → remains of poly size
- Duplicate and order variables.
- Add delimiters.

Theorem

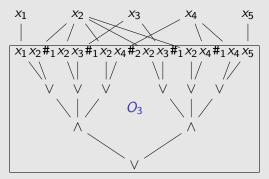
 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).



- Remove sharing. → remains of poly size
- Duplicate and order variables.
- Add delimiters.

Theorem

 O_d (resp. A_d) is complete under projections for Σ_d (resp. Π_d).



- Remove sharing. → remains of poly size
- Duplicate and order variables.
- Add delimiters.

$\ensuremath{\mathsf{ADD}}$ and $\ensuremath{\mathsf{AC}}^0$

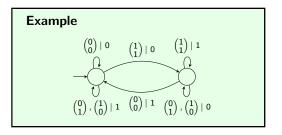
ADD is regular:

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.

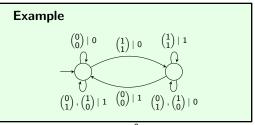
ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



ADD is regular:

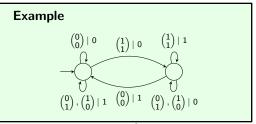
ightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



ADD is complete for AC^0 for a strong notion of reduction (but not projections).

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



ADD is complete for AC^0 for a strong notion of reduction (but not projections).

Theorem

Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.

ADD is complete for AC^0 for a strong notion of reduction (but not projections).

Theorem

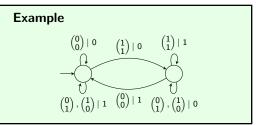
Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

Proof

• Wlog. only \neg and \land gates.

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



ADD is complete for AC^0 for a strong notion of reduction (but not projections).

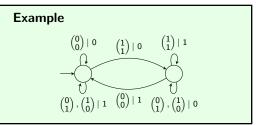
Theorem

Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

- Wlog. only \neg and \land gates.
- \neg -gate: $\neg x$ is the least significant bit of 1 + x.

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



ADD is complete for AC^0 for a strong notion of reduction (but not projections).

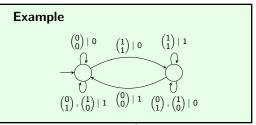
Theorem

Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

- Wlog. only \neg and \land gates.
- \neg -gate: $\neg x$ is the least significant bit of 1 + x.
- \land -gate: $\bigwedge_{i=1}^{n} x_i$ is the most significant bit of $x_1 \cdots x_n + 1$.

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



ADD is complete for AC^0 for a strong notion of reduction (but not projections).

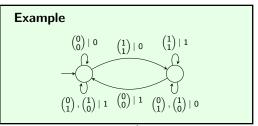
Theorem

Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

- Wlog. only \neg and \land gates.
- \neg -gate: $\neg x$ is the least significant bit of 1 + x.
- \land -gate: $\bigwedge_{i=1}^{n} x_i$ is the most significant bit of $x_1 \cdots x_n + 1$.
- One ADD gate per layer, thanks to double zeroes.

ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.

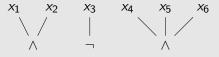


ADD is complete for AC^0 for a strong notion of reduction (but not projections).

Theorem

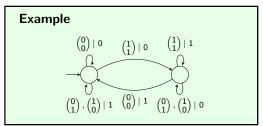
Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

- Wlog. only \neg and \land gates.
- \neg -gate: $\neg x$ is the least significant bit of 1 + x.
- \land -gate: $\bigwedge_{i=1}^{n} x_i$ is the most significant bit of $x_1 \cdots x_n + 1$.
- One ADD gate per layer, thanks to double zeroes.
- If we have a layer:



ADD is regular:

 \rightarrow there is a finite automata that take a string $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ and outputs x+y.



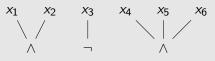
ADD is complete for AC^0 for a strong notion of reduction (but not projections).

Theorem

Every AC⁰ language can be computed by a circuit with only a constant number of ADD gates of polynomial fan-in, and no other gates.

Proof

- Wlog. only \neg and \land gates.
- \neg -gate: $\neg x$ is the least significant bit of 1 + x.
- \land -gate: $\bigwedge_{i=1}^{n} x_i$ is the most significant bit of $x_1 \cdots x_n + 1$.
- One ADD gate per layer, thanks to double zeroes.
- If we have a layer:



Then we use:

An algebraic toolbox

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- ightarrow Usually denoted by the base set M.

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

Examples

(N, +, 0)

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- M is a set.
- \cdot is an operation $M \times M \rightarrow M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · x = $x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

- $(\mathbb{N}, +, 0)$ $(\mathbb{N}, \times, 1)$

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- M is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

- $(\mathbb{N},+,0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\},\wedge,1)$

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- ightarrow Usually denoted by the base set M.

- $(\mathbb{N}, +, 0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- → A generalization of groups.
- ightarrow Usually denoted by the base set M.

- $(\mathbb{N}, +, 0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$
- $(\Sigma^*, \mathsf{concat}, \epsilon)$

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- ightarrow Usually denoted by the base set M.

- $(\mathbb{N}, +, 0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$
- $(\Sigma^*, \mathsf{concat}, \epsilon)$
- $(f: S \rightarrow S, \circ, Id)$

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

Examples

- $(\mathbb{N}, +, 0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$
- $(\Sigma^*, \mathsf{concat}, \epsilon)$
- $(f: S \rightarrow S, \circ, Id)$

Definition (Morphisms)

A morphism from M to N is a function $\mu: M \to N$ such that:

- $\bullet \ \mu(1_M) = 1_N$
- $\bullet \ \mu(x \cdot_M y) = \mu(x) \cdot_N \mu(y)$

A new object

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

Examples

- $(\mathbb{N}, +, 0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$
- $(\Sigma^*, \mathsf{concat}, \epsilon)$
- $(f: S \rightarrow S, \circ, Id)$

Definition (Morphisms)

A morphism from M to N is a function $\mu: M \to N$ such that:

- $\mu(1_M) = 1_N$
- $\bullet \ \mu(x \cdot_M y) = \mu(x) \cdot_N \mu(y)$

Examples

• $x \mapsto 2x$ is a morphism from $(\mathbb{N}, +)$ to itself.

A new object

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

Examples

- $(\mathbb{N},+,0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$
- $(\Sigma^*, \mathsf{concat}, \epsilon)$
- $(f: S \rightarrow S, \circ, Id)$

Definition (Morphisms)

A morphism from M to N is a function $\mu: M \to N$ such that:

- $\bullet \ \mu(1_M)=1_N$
- $\bullet \ \mu(x \cdot_M y) = \mu(x) \cdot_N \mu(y)$

Examples

- $x \mapsto 2x$ is a morphism from $(\mathbb{N}, +)$ to itself.
- The length function is a morphism from Σ^* to $(\mathbb{N},+)$.

A new object

Definition (Monoids)

A monoid is a triplet $(M, \cdot, 1)$ where:

- *M* is a set.
- · is an operation $M \times M \to M$ that is associative $((x \cdot y) \cdot z = x \cdot (y \cdot z))$.
- 1 is a neutral element of M (1 · $x = x \cdot 1 = x$).
- \rightarrow A generalization of groups.
- \rightarrow Usually denoted by the base set M.

Examples

- $(\mathbb{N},+,0)$
- $(\mathbb{N}, \times, 1)$
- $(\{0,1\}, \wedge, 1)$
- $(\{0,1\},\vee,0)$
- $(\Sigma^*, \mathsf{concat}, \epsilon)$
- $(f: S \rightarrow S, \circ, Id)$

Definition (Morphisms)

A morphism from M to N is a function $\mu:M\to N$ such that:

- $\bullet \ \mu(1_M)=1_N$
- $\bullet \ \mu(x \cdot_M y) = \mu(x) \cdot_N \mu(y)$

Examples

- $x \mapsto 2x$ is a morphism from $(\mathbb{N}, +)$ to itself.
- The length function is a morphism from Σ^* to $(\mathbb{N}, +)$.
- The function Σ* → ({0,1}, ∨) that maps a word to 1 if and only if it has some letter a is a morphism.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Proof

• $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let M the set of functions
 δ_w: Q → Q with the composition.
 → it is finite.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let *M* the set of functions
 δ_w : Q → Q with the composition.
 → it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let *M* the set of functions
 δ_w : Q → Q with the composition.
 → it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Proof

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let *M* the set of functions
 δ_w : Q → Q with the composition.
 → it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

• $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let *M* the set of functions
 δ_w : Q → Q with the composition.
 → it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

- $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.
- Construct \mathcal{A} with:
 - Q = M

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let M the set of functions $\delta_w: Q \to Q$ with the composition. \to it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

- $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.
- Construct A with:
 - \bullet Q=M
 - $\bullet \ \delta_a(x) = x \cdot \mu(a)$

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let M the set of functions
 δ_w: Q → Q with the composition.
 → it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

- $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.
- Construct A with:
 - \bullet Q=M
 - $\delta_a(x) = x \cdot \mu(a)$
 - i = 1

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let M the set of functions
 δ_w: Q → Q with the composition.
 → it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

- $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.
- Construct A with:
 - \bullet Q=M
 - $\delta_a(x) = x \cdot \mu(a)$
 - \bullet i=1
 - F = P

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let M the set of functions $\delta_w: Q \to Q$ with the composition. \to it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w . \to it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

- $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.
- Construct A with:
 - \bullet Q=M
 - $\delta_a(x) = x \cdot \mu(a)$
 - \bullet i=1
 - F = P
- Invariant: $\delta_w(i) = \mu(w)$.

Definition

A language L is recognized by a monoid M if there is a morphism $\mu: \Sigma^* \to M$ and $P \subseteq M$ such that $L = \mu^{-1}(P)$.

 \rightarrow Membership in L can be decided by looking only at information contained in M.

Claim

A language L is regular if and only if it is recognized by a finite monoid.

Proof

- $\mathcal{A} = (Q, \delta, i, F)$ DFA for L.
- δ_w is the extended transition function when reading w.
- Let M the set of functions $\delta_w: Q \to Q$ with the composition.
 - \rightarrow it is finite.
- Let $\mu: \Sigma^* \to M$ that maps w to δ_w .
 - \rightarrow it is a morphism.
- Let $P = \{f \mid f(i) \in F\}$. \rightarrow recognizes L.

- $\mu: \Sigma^* \to M$ such that $L = \mu^{-1}(P)$.
- Construct \mathcal{A} with:
 - \bullet Q=M
 - $\delta_a(x) = x \cdot \mu(a)$
 - \bullet i=1
 - \bullet F = P
- Invariant: $\delta_w(i) = \mu(w)$.

ightarrow This is the transition monoid of \mathcal{A} . It makes more structure visible.

We want to associates a distinguished monoid to every regular language.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

 \rightarrow an equivalence relation.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- → an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of μ and ν .

Claim

If $u \sim_L u'$ and $v \sim_L v'$, then $uv \sim_L u'v'$.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

Claim

If $u \sim_L u'$ and $v \sim_L v'$, then $uv \sim_L u'v'$.

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

Claim

If $u \sim_L u'$ and $v \sim_L v'$, then $uv \sim_L u'v'$.

Proof

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

Example

Consider Parity.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- → an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v

Claim

If $u \sim_L u'$ and $v \sim_L v'$, then $uv \sim_L u'v'$.

Proof

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

Example

Consider Parity. Its syntactic relation has two classes:

- words with an even number of 1.
- words with an odd number of 1.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

Claim

If $u \sim_L u'$ and $v \sim_L v'$, then $uv \sim_L u'v'$.

Proof

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

Example

Consider Parity. Its syntactic relation has two classes:

- words with an even number of 1.
- words with an odd number of 1.

Its syntactic monoid is the group $\mathbb{Z}/2\mathbb{Z}$.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

Claim

If $u \sim_l u'$ and $v \sim_l v'$, then $uv \sim_l u'v'$.

Proof

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

Example

Consider Parity. Its syntactic relation has two classes:

- words with an even number of 1.
- words with an odd number of 1.

Its syntactic monoid is the group $\mathbb{Z}/2\mathbb{Z}$.

Example

Consider the language of words with a 1.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- \rightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

Claim

If $u \sim_l u'$ and $v \sim_l v'$, then $uv \sim_l u'v'$.

Proof

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

Example

Consider Parity. Its syntactic relation has two classes:

- words with an even number of 1.
- words with an odd number of 1.

Its syntactic monoid is the group $\mathbb{Z}/2\mathbb{Z}$.

Example

Consider the language of words with a 1. Its syntactic relation has two classes:

- words with a 1.
- words without a 1.

We want to associates a distinguished monoid to every regular language.

Definition

The syntactic relation of L is the relation on Σ^* defined by $u \sim_L v$ iff for all x, y, $xuy \in L \Leftrightarrow xvy \in L$.

- \rightarrow an equivalence relation.
- ightarrow Meaning: we can replace u by v anywhere without changing membership in L.

Definition

The syntactic monoid M_L of L is the set of equivalence classes of \sim_L equiped with: for $C_1, C_2 \in M_L$, and $u \in C_1$ and $v \in C_2$, $C_1 \cdot C_2$ is the class of uv.

 \rightarrow We have to check that this is well defined: the class $C_1 \cdot C_2$ does not depend on the choice of u and v.

Claim

If $u \sim_i u'$ and $v \sim_i v'$, then $uv \sim_i u'v'$.

Proof

- Let x, y such that $xuvy \in L$.
- Equivalent to $xu'vy \in L$ by $u \sim_L u'$.
- Equivalent to $xu'v'y \in L$ by $v \sim_L v'$.

Example

Consider Parity. Its syntactic relation has two classes:

- words with an even number of 1.
- words with an odd number of 1.

Its syntactic monoid is the group $\mathbb{Z}/2\mathbb{Z}$.

Example

Consider the language of words with a 1. Its syntactic relation has two classes:

- words with a 1.
- words without a 1.

Its syntactic monoid is $(\{0,1\},\vee)$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of $\it L$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

Proof

• $A = (Q, \delta, i, F)$ minimal DFA for L.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

Proof

• $A = (Q, \delta, i, F)$ minimal DFA for L.

$$\rightarrow$$
 satisfies $p = q$ whenever

Claim

The syntactic monoid is the transition monoid of the minimal automaton of *L*.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever
 - $\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $A = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever
 - $\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $A = (Q, \delta, i, F)$ minimal DFA for L.
 - ightarrow satisifes $\emph{p}=\emph{q}$ whenever

$$\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$$

- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $A = (Q, \delta, i, F)$ minimal DFA for L.
 - ightarrow satisifes p=q whenever

$$\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$$

- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuy}(i) \in F$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $A = (Q, \delta, i, F)$ minimal DFA for L.
 - ightarrow satisifes p=q whenever

$$\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$$

- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $A = (Q, \delta, i, F)$ minimal DFA for L.
 - ightarrow satisifes p=q whenever

$$\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$$

- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $A = (Q, \delta, i, F)$ minimal DFA for L.
 - ightarrow satisifes p=q whenever

$$\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$$

- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuy}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisfies p = q whenever
 - $\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F \text{ for all } x.$
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of *L*.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever $\delta_{x}(p) \in F \Leftrightarrow \delta_{x}(q) \in F$ for all x.
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

- \Rightarrow : if $u \sim_L v$.
 - Let $p \in Q$: by minimality, there is x such that $\delta_x(i) = p$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever $\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F$ for all x.
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

- \Rightarrow : if $u \sim_L v$.
 - Let $p \in Q$: by minimality, there is x such that $\delta_x(i) = p$.
 - For all y, we have $xuy \in L \Leftrightarrow xvy \in L$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever $\delta_{x}(p) \in F \Leftrightarrow \delta_{x}(q) \in F$ for all x.
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

- \Rightarrow : if $u \sim_L v$.
 - Let $p \in Q$: by minimality, there is x such that $\delta_x(i) = p$.
 - For all y, we have $xuy \in L \Leftrightarrow xvy \in L$.
 - Thus, $\delta_{uy}(p) \in F \Leftrightarrow \delta_{vy}(p) \in F$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever $\delta_{x}(p) \in F \Leftrightarrow \delta_{x}(q) \in F$ for all x.
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

- \Rightarrow : if $u \sim_L v$.
 - Let $p \in Q$: by minimality, there is x such that $\delta_x(i) = p$.
 - For all y, we have $xuy \in L \Leftrightarrow xvy \in L$.
 - Thus, $\delta_{uy}(p) \in F \Leftrightarrow \delta_{vy}(p) \in F$.
 - Thus, $\delta_y(\delta_u(p)) \in F \Leftrightarrow \delta_y(\delta_v(p)) \in F$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever $\delta_{x}(p) \in F \Leftrightarrow \delta_{x}(q) \in F$ for all x.
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

- \Rightarrow : if $u \sim_L v$.
 - Let $p \in Q$: by minimality, there is x such that $\delta_x(i) = p$.
 - For all y, we have $xuy \in L \Leftrightarrow xvy \in L$.
 - Thus, $\delta_{uy}(p) \in F \Leftrightarrow \delta_{vy}(p) \in F$.
 - Thus, $\delta_{\nu}(\delta_{\mu}(p)) \in F \Leftrightarrow \delta_{\nu}(\delta_{\nu}(p)) \in F$.
 - By minimality, $\delta_u(p) = \delta_v(p)$.

Claim

The syntactic monoid is the transition monoid of the minimal automaton of L.

 $\rightarrow M_L$ is finite and recognizes L.

Proof

- $\mathcal{A} = (Q, \delta, i, F)$ minimal DFA for L. \rightarrow satisifes p = q whenever $\delta_x(p) \in F \Leftrightarrow \delta_x(q) \in F$ for all x.
- We need: $u \sim_L v$ iff $\delta_u = \delta_v$.
- \Leftarrow : if $\delta_u = \delta_v$.
 - For x, y, assume $xuy \in L$.
 - Thus $\delta_{xuv}(i) \in F$.
 - Thus $\delta_{xvy}(i) \in F$.
 - Thus $xvy \in L$.
 - Hence $u \sim_L v$.

- \Rightarrow : if $u \sim_l v$.
 - Let $p \in Q$: by minimality, there is x such that $\delta_x(i) = p$.
 - For all y, we have $xuy \in L \Leftrightarrow xvy \in L$.
 - Thus, $\delta_{uy}(p) \in F \Leftrightarrow \delta_{vy}(p) \in F$.
 - Thus, $\delta_{\nu}(\delta_{\mu}(p)) \in F \Leftrightarrow \delta_{\nu}(\delta_{\nu}(p)) \in F$.
 - By minimality, $\delta_u(p) = \delta_v(p)$.
 - Hence, $\delta_u = \delta_v$.

 \rightarrow Also gives an algorithm to compute M_L .

The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

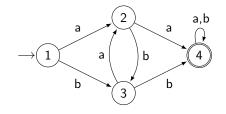
 \rightarrow We can only describe the multiplication by δ_a and δ_b .

The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton



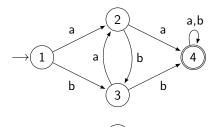
1	2	3	4

The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton



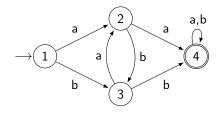
	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4

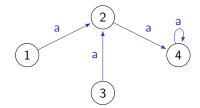
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





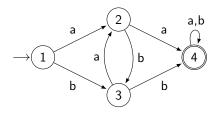
	1	2	3	4
δ_{ε}	1	2	3	4
$\delta_{arepsilon} \ \delta_{a}$	1 2	4	2	4

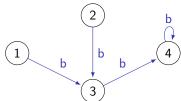
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





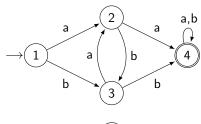
	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
$\delta_{arepsilon}$ $\delta_{oldsymbol{a}}$	2	4	2	4
δ_b	3	3	4	4

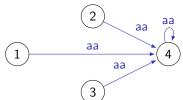
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





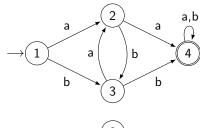
	1	2	3	4
δ_{ε}	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4

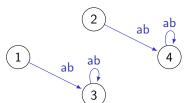
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





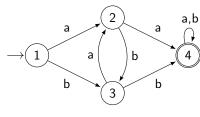
	1	2	3	4
δ_{ε}	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4

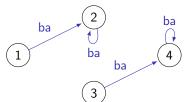
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by $\delta_{\it a}$ and $\delta_{\it b}.$

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





	1	2	3	4
δ_{ε}	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
$\delta_{\it ba}$	2	2	4	4

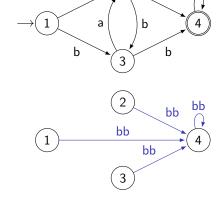
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by δ_a and δ_b .

a,b

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton



	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
δ_{a}	2	4	2	4
δ_{b}	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
$\delta_{\it ba}$	2	2	4	4

$$\delta_b \cdot \delta_b = \delta_{aa}$$

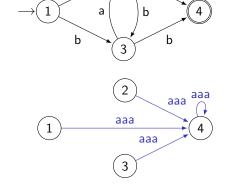
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

 \rightarrow We can only describe the multiplication by δ_a and δ_b .

a,b

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton



	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
δ_{ba}	2	2	4	4

$$\begin{array}{ccc} \delta_b \cdot \delta_b & = & \delta_{aa} \\ \delta_{aa} \cdot \delta_a & = & \delta_{aa} \end{array}$$

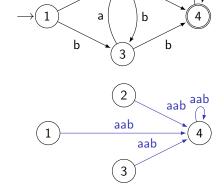
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

 \rightarrow We can only describe the multiplication by δ_a and δ_b .

a,b

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton



	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
δ_{a}	2	4	2	4
δ_{b}	3	3	4	4
δ_{aa}	4	4	4	4
$\delta_{\sf ab}$	3	4	3	4
$\delta_{\it ba}$	2	2	4	4

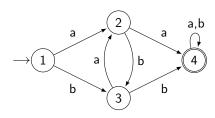
$$\begin{array}{rcl}
\delta_b \cdot \delta_b & = & \delta_{aa} \\
\delta_{aa} \cdot \delta_a & = & \delta_{aa} \\
\delta_{aa} \cdot \delta_b & = & \delta_{aa}
\end{array}$$

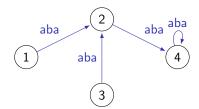
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

ightarrow We can only describe the multiplication by δ_a and δ_b .

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
δ_{ba}	2	2	4	4

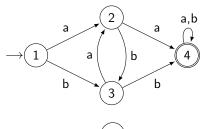
$$\begin{array}{rcl} \delta_b \cdot \delta_b & = & \delta_{aa} \\ \delta_{aa} \cdot \delta_a & = & \delta_{aa} \\ \delta_{aa} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_a & = & \delta_a \end{array}$$

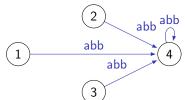
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

 \rightarrow We can only describe the multiplication by δ_a and δ_b .

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
δ_{ba}	2	2	4	4

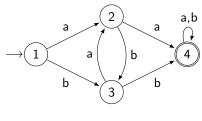
$$\begin{array}{llll} \delta_b \cdot \delta_b & = & \delta_{aa} \\ \delta_{aa} \cdot \delta_a & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_a & = & \delta_a \\ \delta_{ab} \cdot \delta_b & = & \delta_{aa} \end{array}$$

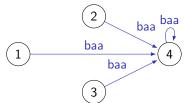
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

 \rightarrow We can only describe the multiplication by δ_a and δ_b .

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





	1	2	3	4
$\delta_{arepsilon}$	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
δ_{ba}	2	2	4	4

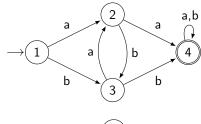
$$\begin{array}{llll} \delta_b \cdot \delta_b & = & \delta_{aa} \\ \delta_{aa} \cdot \delta_a & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_a & = & \delta_a \\ \delta_{ab} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ba} \cdot \delta_a & = & \delta_{aa} \end{array}$$

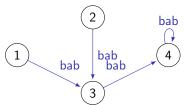
The syntactic monoid is generated by δ_a and δ_b : every element can be obtained are a product of these two.

 \rightarrow We can only describe the multiplication by δ_a and δ_b .

Computation of the syntactic monoid of $(a + b)^*(aa + bb)(a + b)^*$.

Minimal automaton





	1	2	3	4
δ_{ε}	1	2	3	4
δ_a	2	4	2	4
δ_b	3	3	4	4
δ_{aa}	4	4	4	4
δ_{ab}	3	4	3	4
δ_{ba}	2	2	4	4

$$\begin{array}{llll} \delta_b \cdot \delta_b & = & \delta_{aa} \\ \delta_{aa} \cdot \delta_a & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ab} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ba} \cdot \delta_a & = & \delta_{aa} \\ \delta_{ba} \cdot \delta_b & = & \delta_{aa} \\ \delta_{ba} \cdot \delta_b & = & \delta_b \end{array}$$

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

• Take the sequence of x^i for any i.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all $j \ge i$, $x^j = x^{j+p}$.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- x^{kp} is idempotent.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- x^{kp} is idempotent.
- \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$
- For all $j \ge i$, $x^j = x^{j+p}$.
- For i = kp, $x^{kp} = x^{kp+p}$.
- For *j* = *kp*, *x* * = *x* * * *.
 x^{kp} is idempotent.
- \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.
- \rightarrow We denote it x^{ω} .

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- For j = kp, x r = x r r.
 x^{kp} is idempotent.

 \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.

 \rightarrow We denote it x^{ω} .

The case p = 1 is particularly interesting.

Definition

A monoid M is aperiodic if for every $x \in M$, we have

$$x^{\omega+1} = x^{\omega}$$

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- For j = kp, x r = x r r.
 x^{kp} is idempotent.

 \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.

 \rightarrow We denote it x^{ω} .

The case p = 1 is particularly interesting.

Definition

A monoid M is aperiodic if for every $x \in M$, we have

$$x^{\omega+1} = x^{\omega}$$

 \rightarrow Intuition: M cannot count.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- For j = kp, $x^{r} = x^{r+r}$ • x^{kp} is idempotent.

 \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.

 \rightarrow We denote it x^{ω} .

The case p = 1 is particularly interesting.

Definition

A monoid M is aperiodic if for every $x \in M$, we have

$$x^{\omega+1} = x^{\omega}$$

- \rightarrow Intuition: *M* cannot count.
- \rightarrow A language L is aperiodic if M_L is.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$.
- For all j > i, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- x^{kp} is idempotent.

 \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.

 \rightarrow We denote it x^{ω} .

The case p = 1 is particularly interesting.

Definition

A monoid M is aperiodic if for every $x \in M$, we have

$$x^{\omega+1} = x^{\omega}$$

- → Intuition: *M* cannot count.
- \rightarrow A language *L* is aperiodic if M_L is.

Example

Parity and $\mathbb{Z}/2\mathbb{Z}$ are not aperiodic: $1^{\omega} = 0$ and $1^{\omega+1} = 1$.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$
- For all j > i, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- x^{kp} is idempotent.

 \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.

 \rightarrow We denote it x^{ω} .

The case p = 1 is particularly interesting.

Definition

A monoid M is aperiodic if for every $x \in M$, we have

$$x^{\omega+1} = x^{\omega}$$

- → Intuition: *M* cannot count.
- \rightarrow A language L is aperiodic if M_L is.

Example

Parity and $\mathbb{Z}/2\mathbb{Z}$ are not aperiodic: $1^{\omega}=0$ and $1^{\omega+1}=1$.

 \rightarrow For any $m \in \mathbb{N}$, Mod_m is also not aperiodic.

Definition

An idempotent is an element $x \in M$ such that $x^2 = x$.

→ Capture cycles in an automaton.

We can find idempotents easily:

Claim

For every $x \in M$, there is an $i \in \mathbb{N}$ such that x^i is idempotent.

Proof

- Take the sequence of x^i for any i.
- Pigeonhole: there is some $x^i = x^{i+p}$
- For all $j \ge i$, $x^j = x^{j+p}$.
- For j = kp, $x^{kp} = x^{kp+p}$.
- x^{kp} is idempotent.
- \rightarrow It is unique: if x^i and x^j are idempotents then $x^i = x^{ij} = x^j$.
- \rightarrow We denote it x^{ω} .

The case p = 1 is particularly interesting.

Definition

A monoid M is aperiodic if for every $x \in M$, we have

$$x^{\omega+1} = x^{\omega}$$

- \rightarrow Intuition: *M* cannot count.
- \rightarrow A language *L* is aperiodic if M_L is.

Example

Parity and $\mathbb{Z}/2\mathbb{Z}$ are not aperiodic: $1^{\omega} = 0$ and $1^{\omega+1} = 1$.

 \rightarrow For any $m \in \mathbb{N}$, Mod_m is also not aperiodic.

Example

 $\Sigma^* a \Sigma^*$ and $(\{0,1\},\vee)$ are aperiodic: $0^\omega = 0^{\omega+1} = 0$ and $1^\omega = 1^{\omega+1} = 1$.

The regular languages of AC⁰

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

- A ∨-gate for union.
- ullet A \wedge -gate for intersection.
- $\bullet~$ A $\neg\text{-gate}$ for complement.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

 AC^0 languages are close under concatenation.

Proof

• Circuits C_1 and C_2 for L_1 and L_2 .

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

 AC^0 languages are close under concatenation.

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by:

$$\bigvee_{i=0}^{n} C_1[1,i] \wedge C_2[i+1,n].$$

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by:
- $\bigvee_{i=0}^{n} C_1[1,i] \wedge C_2[i+1,n].$ 2(n+1) circuits of polynomial size.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.
- \rightarrow Complement needed to have infinite languages.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

→ Complement needed to have infinite languages.

Examples

 \bullet $\Sigma^* =$

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- ullet A \wedge -gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

 \rightarrow Complement needed to have infinite languages.

Examples

• $\Sigma^* = \emptyset^c$.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- ullet A \wedge -gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

 \rightarrow Complement needed to have infinite languages.

- $\Sigma^* = \emptyset^c$.
- $a^* =$

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

→ Complement needed to have infinite languages.

- $\Sigma^* = \emptyset^c$.
- $a^* = (\emptyset^c b \emptyset^c)^c$.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^n C_1[1,i] \wedge C_2[i+1,n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

→ Complement needed to have infinite languages.

- $\Sigma^* = \emptyset^c$.
- $a^* = (\emptyset^c b \emptyset^c)^c$.
- $(ab)^*$ =

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^{n} C_1[1, i] \wedge C_2[i+1, n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

 \rightarrow Complement needed to have infinite languages.

- $\Sigma^* = \emptyset^c$.
- $a^* = (\emptyset^c b \emptyset^c)^c$.
- $(ab)^* = (b\emptyset^c + \emptyset^c a + \emptyset^c a a \emptyset^c + \emptyset^c b b \emptyset^c)^c$.

Claim

AC⁰ languages are close under Boolean operations (union, intersection, complement).

Proof

- A ∨-gate for union.
- A ∧-gate for intersection.
- A ¬-gate for complement.

Claim

AC⁰ languages are close under concatenation.

Proof

- Circuits C_1 and C_2 for L_1 and L_2 .
- Guess the split position.
- $L_1 \cdot L_2$ computed by: $\bigvee_{i=0}^{n} C_1[1, i] \wedge C_2[i+1, n]$.
- 2(n+1) circuits of polynomial size.

The problem is the Kleene star: Parity is the Kleene star of an AC⁰ language.

Definition

A language is star-free if it is expressible with a regular expression with only:

- \emptyset , ϵ and a for $a \in \Sigma$,
- union,
- complement,
- concatenation.

→ Complement needed to have infinite languages.

Examples

- $\Sigma^* = \emptyset^c$.
- $a^* = (\emptyset^c b \emptyset^c)^c$.
- $(ab)^* = (b\emptyset^c + \emptyset^c a + \emptyset^c aa\emptyset^c + \emptyset^c bb\emptyset^c)^c$.

Claim

star-free $\subseteq AC^0$

For the converse, we are stuck... we need algebra!

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

Proof (⇒)

• Induction on the expression.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

Proof (⇒)

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^nv \in L_1 \cup L_2$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^nv \in L_1 \cup L_2$ $\Leftrightarrow ux^nv \in L_1 \text{ or } ux^nv \in L_2$ $\Leftrightarrow ux^{n+1}v \in L_1 \text{ or } ux^{n+1}v \in L_2$ $\Leftrightarrow ux^{n+1}v \in L_1 \cup L_2$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

Proof (⇒)

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.
- Concatenation: for any *u*, *v*
- $ux^{2n}v \in L_1L_2$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L_1 and L_2 be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.
- Concatenation: for any *u*, *v*
- $ux^{2n}v \in L_1L_2$
- $\Rightarrow ux^iu' \in L_1$ and $v'x^jv \in L_2$ with $i \geq n$ or $j \geq n$.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.
- Concatenation: for any u, v
- $ux^{2n}v \in L_1L_2$
- $\Rightarrow ux^iu' \in L_1$ and $v'x^jv \in L_2$ with $i \geq n$ or $j \geq n$.
- So $ux^{i+1}u' \in L_1$ or $v'x^{j+1}v \in L_2$.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.
- Concatenation: for any *u*, *v*
- $ux^{2n}v \in L_1L_2$
- $\Rightarrow ux^iu' \in L_1$ and $v'x^jv \in L_2$ with $i \geq n$ or $j \geq n$.
- So $ux^{i+1}u' \in L_1$ or $v'x^{j+1}v \in L_2$.
- Thus $ux^{2n+1}v \in L_1L_2$.
- The equivalence is proved similarly.

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L₁ and L₂ be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.
- Concatenation: for any u, v
- $ux^{2n}v \in L_1L_2$
- $\Rightarrow ux^iu' \in L_1$ and $v'x^jv \in L_2$ with $i \ge n$ or $j \ge n$.
- So $ux^{i+1}u' \in L_1$ or $v'x^{j+1}v \in L_2$.
- Thus $ux^{2n+1}v \in L_1L_2$.
- The equivalence is proved similarly.
- $x^{2n} \sim_{L_1L_2} x^{2n+1}$

For the converse, we are stuck... we need algebra!

Theorem (Schützenberger)

The star-free languages are precisely the aperiodic languages.

- Induction on the expression.
- $M_{\emptyset} = \{1\}.$
- $M_{\epsilon} = (\{0,1\}, \vee).$
- For $a \in \Sigma$, $M_a = \{0, 1, 2\}$ with $x \cdot y = \min(x + y, 2)$.
- For any L, $\sim_L = \sim_{L^c}$ thus $M_{L^c} = M_L$.
- For the last two case, let L_1 and L_2 be aperiodic.
- For $x \in \Sigma^*$, let n such that $x^n \sim_{L_1} x^{n+1}$ and $x^n \sim_{L_2} x^{n+1}$.

- union: for any u, v
- $ux^n v \in L_1 \cup L_2$ $\Leftrightarrow ux^n v \in L_1 \text{ or } ux^n v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \text{ or } ux^{n+1} v \in L_2$ $\Leftrightarrow ux^{n+1} v \in L_1 \cup L_2$
- $x^n \sim_{L_1 \cup L_2} x^{n+1}$.
- Concatenation: for any u, v
- $ux^{2n}v \in L_1L_2$
- $\Rightarrow ux^iu' \in L_1$ and $v'x^jv \in L_2$ with i > n or i > n.
- So $ux^{i+1}u' \in L_1$ or $v'x^{j+1}v \in L_2$.
- Thus $ux^{2n+1}v \in L_1L_2$.
- The equivalence is proved similarly.
- $x^{2n} \sim_{L_1L_2} x^{2n+1}$

[←] Much more complicated: need a structure theory of monoids (Green's theory).

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

 $L \in AC^0 \Leftrightarrow L$ is star-free.

Proof

• *L* a regular language with a neutral letter that is not star-free.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q}=x^{\omega}$.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to *L*.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- L a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

Proof

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q}=x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

• Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

- Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.
- Assume that x^{ω} and $x^{\omega+1}$ have same size (thanks to the neutral letter).

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

- Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.
- Assume that x^{ω} and $x^{\omega+1}$ have same size (thanks to the neutral letter).
- Let f that send 0 to x^{ω} and 1 to $x^{\omega+1}$;

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- L a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

- Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.
- Assume that x^{ω} and $x^{\omega+1}$ have same size (thanks to the neutral letter).
- Let f that send 0 to x^{ω} and 1 to $x^{\omega+1}$:
- The reduction send w to $uf(w_0)\cdots f(w_n)v$.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- L a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

- Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.
- Assume that x^{ω} and $x^{\omega+1}$ have same size (thanks to the neutral letter).
- Let f that send 0 to x^{ω} and 1 to $x^{\omega+1}$:
- The reduction send w to $uf(w_0)\cdots f(w_n)v$.
- This word is equivalent to $ux^{\omega+Parity^c(w)}v$.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_q to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

- Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.
- Assume that x^{ω} and $x^{\omega+1}$ have same size (thanks to the neutral letter).
- Let f that send 0 to x^{ω} and 1 to $x^{\omega+1}$:
- The reduction send w to $uf(w_0)\cdots f(w_n)v$.
- This word is equivalent to $ux^{\omega+Parity^c(w)}v$.
- This is in L iff Parity(w) = 0.

A small technicality:

Definition

A language L has a neutral letter c if c can be added and removed anywhere without affecting membership in L.

Theorem (Barrington, Compton, Straubing, Thérien)

Let L be a regular language with a neutral letter, then

$$L \in AC^0 \Leftrightarrow L$$
 is star-free.

Proof

- *L* a regular language with a neutral letter that is not star-free.
- It is not aperiodic: there is $x \in M_L$ st $x^{\omega+1} \neq x^{\omega}$.
- Let q the smallest integer st $x^{\omega+q} = x^{\omega}$.
- We want to reduce Mod_a to L.
- $\mathsf{Mod}_q \notin \mathsf{AC}^0 \Rightarrow L \notin \mathsf{AC}^0$.
- We prove the case q = 2.

- Let u, v st (wlog.) $ux^{\omega}v \in L$ and $ux^{\omega+1}v \notin L$.
- Assume that x^{ω} and $x^{\omega+1}$ have same size (thanks to the neutral letter).
- Let f that send 0 to x^{ω} and 1 to $x^{\omega+1}$:
- The reduction send w to $uf(w_0) \cdots f(w_n)v$.
- This word is equivalent to $ux^{\omega+Parity^c(w)}v$.
- This is in L iff Parity(w) = 0.

Without a neutral letter, $(aa)^*$ is not star-free but is in AC^0 .

We can identify the regular languages in a few other classes.

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d_i, l_i) with $d_i \in \{\rightarrow, \leftarrow\}$ and $l_i \in \Sigma$.

The turle starts at position 1 and, for each instruction, moves on the direction d_i until it reaches a letter l_i . It fails if it does not find the letter at any point.

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d_i, l_i) with $d_i \in \{\rightarrow, \leftarrow\}$ and $l_i \in \Sigma$.

The turle starts at position 1 and, for each instruction, moves on the direction d_i until it reaches a letter l_i . It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of $WLAC^0$ are precisely the Boolean combination of turtle programs.

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d_i, l_i) with $d_i \in \{\rightarrow, \leftarrow\}$ and $l_i \in \Sigma$.

The turle starts at position 1 and, for each instruction, moves on the direction d_i until it reaches a letter l_i . It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of WLAC⁰ are precisely the Boolean combination of turtle programs.

Definition

A subword language is a language L for which there exists u such that L is the set of words that have u as a subword.

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d_i, l_i) with $d_i \in \{\rightarrow, \leftarrow\}$ and $l_i \in \Sigma$.

The turle starts at position 1 and, for each instruction, moves on the direction d_i until it reaches a letter l_i . It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of WLAC⁰ are precisely the Boolean combination of turtle programs.

Definition

A subword language is a language L for which there exists u such that L is the set of words that have u as a subword.

Theorem

The regular languages with a neutral letter that can be computed by k-DNFs with constant k are precisely the Boolean combination of subword languages.

We can identify the regular languages in a few other classes.

Definition

A turtle program is a sequence (d_i, l_i) with $d_i \in \{\rightarrow, \leftarrow\}$ and $l_i \in \Sigma$.

The turle starts at position 1 and, for each instruction, moves on the direction d_i until it reaches a letter l_i . It fails if it does not find the letter at any point.

Theorem

The regular languages with a neutral letter of WLAC⁰ are precisely the Boolean combination of turtle programs.

Definition

A subword language is a language L for which there exists u such that L is the set of words that have u as a subword.

Theorem

The regular languages with a neutral letter that can be computed by k-DNFs with constant k are precisely the Boolean combination of subword languages.

→ Can be extended to depth-3 but not depth-4 so far.