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e Heavily depends on interactions between the two (e.g. the compilation procedure).

Solution: very low-level models showing atomic steps of computations and

standardized units.

Sequential

Parallel

e Turing Machines

o Infinite tape

e Each cell contains a single bit

e The head moves one position at a
time according to simple control
rules

e Boolean Circuits

e Lots of processors

e Each of them computes a single bit,
using a Boolean operation

e Either uses inputs bits or result from
other processors

e Connections are fixed
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The ouput of the circuit is v, (go)-
The circuit computes a function
fc :{0,1}" — {0,1} defined by
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L(C) = U, L(Ca)-

Example

Denote by Acc, the circuit with n inputs
that always accepts (one “1" gate and no
wires). Similarly, define Rej, that always
rejects.
Consider the family C:

e C, = Acc, if the n" TM (in some

order) always halts

e C, = Rej, otherwise
Then L(C) is undecidable but all circuits
are trivial.

Can be avoided with uniformity: a procedure
to compute the n'" circuit in the family.

— Not here

— See the lectures on “Complexity Theory”
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Machines with advice

Definition (advice) Proof (<)
A Turing machine with advice Misa TM e Evaluating a poly-size circuit can be
with two inputs x and y, and an advice done in poly time.
function a: N — {0,1}*. e The circuit is the advice.
It accepts a word x if M accepts For the converse, we admit the following for
(x; a(|x[))- the moment.

Lemma

Drsifiafitiom ([ jpeiy) There is a poly-size circuit for every lan-

The complexity class P/poly is the class guage in P.
of languages accepted by a TM running
in polynomial time with a polynomial size

advice. Proof (=)
— A non-uniform version of P. e Take M a P/poly TM.
e Construct D, the circuit for M with
Theorem inputs x and y of sizes n and |a(n)|,
Lis in P/poly by the lemma.
= e Take C, to be D, with the inputs in
L is computable by a poly-size circuit y replaced by a(n).
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Otherwise, the output only depends in finitely
many inputs.

Definition (WLAC)

The class WLAC? consists of languages
recognizable by circuits of constant depth
with linearly many wires.

— Extremely efficient parallel algorithms.

Claim
WLAC® € AC® € NC!

Definition (NC')

The class NC! consists of languages rec-
ognizable by circuits of polynomial size,
logarithmic depth and fan-in 2.

Proof
e We can remove the gates not linked
to any wire.
e a V gate of fan-in n can be trans-
formed into a binary tree of size 2n
and depth log(n).

What if we restrict the number of
communications?
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Problem (ADD) Example (A circuit for ADD)
e Given: Two n-bits numbers x and e Notation: @ denotes XOR
y e Idea: Computes the successive car-
e Output: A n—+ 1-bits number z = ries:
X+y ® o = X0\ Yo
- o ¢ = (x,-/\y,-)\/((x,-\/y,-)/\c,-_l)
Not a language, but a function. e The outputs are then:
— Consider circuits with several outputs (one e 2= x0 D Yo
for each bit of the answer) ¢ Z=x DYy DCci1
— numbers are x = x,, - - - x; from high ® Zyi1=¢Cp

weights to low weigths - -
— linear size

— linear depth

This is roughly the sequential algorithm.
— We can do better in parallel!
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Proof
e lIdea: Still computes the carries.
The carry ¢; is 1 iff
e a carry is created at a position j </, i.e. x; A yj, and
o the carry is not lost between j and j, i.e. A;:j+1(x, V).
e Thus:
i = Vijzo((5 A Yi) A Nizjrar (0 V 1)

e As before: zp =x9 B yp, Z =X D y; D ¢ and 2,411 = ¢,

— Quadratic size (by factorizing the (x; A y;) and (x; V y;) )
— Constant depth
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Proof

LN Ot

Zy Z4 zZ3 V) 21
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Z=X1+ "+ Xp

Lemma
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Adding many numbers

What if we want to add several numbers in
parallel?

Problem ADD"
e Given: n many n-bits numbers
X1y..-Xn
e Output: A n + log(n)-bits number
Z=x1+ -+ X,

Problem ADD'"&(")
e Given: log(n) many n-bits numbers

X1, -+ - Xlog(n)
o Output: A n+loglog(n)-bits num-
ber z = x1 + -+ + Xog(n)

What are their respective complexities?

Claim
ADD"e NC!

Proof
A binary tree of AC? circuits for ADD.

Lemma
ADD'&(" ¢ AC?

A binary tree only gives depth log log(n)
— next slide

Theorem

ADD"¢ AC°

— next lecture

The case of WLAC? will be the topic of the
rest of this lecture.
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Lemma
ADD'&(" ¢ ACC

Intuition
e Adding the following numbers. ..

X1:1 10
x2=000
X3:1 11

01011

11001

00111
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Adding log(n) numbers

Lemma
ADD'&(" ¢ ACC

Intuition
e Adding the following numbers. ..

X1 = 110
xx=000
X3 = 111
e ...reduces to adding the numbers:
yi= 110
y= 00

LY oro

[ )

[T

Il o+~ R

011
001
111
10
011
0101
S4
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— the earlier diagonal form n + loglog(n) + - - - + log*(n) bits number

— n+ loglog(n) bits numbers where k = smallest integer such that the
o Clearly: Y. xi=>",y k-fold application of log on nis < 2.
e All s; and y; depends on only e Small computation, for n big:
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— they can be computed in AC°
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Adding log(n) numbers

Lemma
ADD"&(M e AC?

Proof
e Forl1<j<n,
s = S8 jth it of x;
— log log(n) bits numbers.

e For 1 </ <loglog(n), let y; be
the concatenation of the /" bits
of the s;, with / — 1 zeroes in the
end.

— the earlier diagonal form
— n + loglog(n) bits numbers

o Clearly: Y. xi=>",y

e All s; and y; depends on only
log(n) bits of the input
— they can be computed in AC°
by “brute force”

New goal: Add loglog(n) many

(n+ loglog(n)) bits numbers

New new goal: Add logloglog(n) many
(n + loglog(n) + log log log(n)) bits
numbers

e Last goal: Add two

n + loglog(n) + - - - + log*(n) bits number
where k = smallest integer such that the
k-fold application of log on nis < 2.
Small computation, for n big:

log log(n) + - - - + log"(n) < log(n)

We just have to add two n + log(n)
numbers, that can be computed in AC°
(depends on log(n) bits of the y;)
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Concentration of computation

We will study circuits from the properties of the underlying graph.

Definition (superconcentrator)

Let G be a DAG with ninputs xi, ..., x, and n outputs y1, ..., y,. Itisa superconcentrator
if for all k and set of indices i; < j1 < --- < ix < jk, there are k vertex disjoint paths from
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Lemma (Valiant, Pippinger)

There is a superconcentrator with linearly
many edges.

— it has logarithmic depth.

To tackle WLACO, we have more structure.

Theorem (Dolev, Dwork, Pippinger,
Widgerson)

There are no superconcentrator with
constant-depth and linearly many edges.

To have a lower bound against WLACO, we
only need to prove that certain circuits have
to be superconcentrators.

We have tools for that.

Definition (Cut)
Let X and Y be two sets of vertices in a
graph. A cut between X and Y is a set

of vertices whose removal disconnect X
and Y.

Theorem (Menger)

For any two disjoints X and Y, the min-
imum size of a cut between X and Y is
also the maximum number of vertex dis-
joint paths between X and Y.

— Can be seen as a special case of the
max-flow min-cut theorem.

— To show that there are many vertex
disjoint paths, we must show that there are
no small cuts.
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Theorem
ADD ¢ WLAC®

Proof o )
o Let C be a circuit for ADD with n

inputs.
e G is the graph with inputs x; and y;
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e For w a word, ¢,, is the extended
transition function.
e Finitely many functions @ — Q
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A s-DNF is a DNF with s clauses.

Definition (Restriction)
A restriction for a set of variables X is a
mapping

p: X —={0,1,%}.

— * means that the variable is unassigned.
— for f a Boolean function over X, a
restriction p defines a subfunction f,.

Theorem (Switching lemma)

For 0 < p <1 and f a Boolean function
f with n variables that can be expressed
as a t-CNF:

P,(f, has no s-DNF) < (8pt)*
where the probability is taken over all
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— Admitted.
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Last try: the approximation technique

Idea: Relax the notion of representation.
— we will approximate circuits with
polynomials over 5.

Formalization of 1):

Proof Idea
1) Approximate functions computed
by ACP circuits by low-degree poly-
nomials over 3.
2) Parity cannot be approximated by
low-degree polynomials over F3.

Lemma

Let C be a circuit of depth d and size
M that computes a function f.

Then, for 1 < r < n, there is a polyno-
mial p of degree < (2r)9 such that:

distance(f,p) < M -2""".

Approximate means being correct on many
inputs.

— proved later.

Formalization of 2):

Definition

For f(x) a function with n inputs and p
a polynomial:

distance(f, p) = |{3 € {0,1}" | p(3) #
f(a)}|

Lemma
There is a constant ¢ > 0 such that ev-
ery polynomial of degree < /n satisfies:

distance(Parity, p) > ¢ - 2".

— Admitted.
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deg(pg) < 2r - max(deg(py,))-
e For a gate at depth i, deg(g) <
(2r).

Distance bound:

e —-gates do not introduce errors.

e for a V-gate, assume pj, is wrong
for at most My - 2"~" inputs, where
M is the size of the subcircuit of
hy.
Then p, is wrong for at most (M; +
coo+ My +1)-2""" inputs.
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Recap

We have seen:
e Reduction from ADD" to Parity.
e Every regular language is in NCE.
e Parity can be rather efficiently computed but we have one of the highlights of complexity:

Theorem
Parity ¢ AC®

e Two different proofs:
e Reducing the depth iteratively with random restrictions: switching lemma.
e Approximate AC® circuits by low-degree polynomials.

16/16
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A language L is complete under projec-
tions for a class C if L € C and there is a
projection from every language in C to L.
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Then O441 can be computed by:

\/ #a(i) A #4(j) A Cali, j]

i<j

e The extra A are absorbed by Cy
e There is a quadratic number of poly size circuits.

Ay is the complement of Oy4: the negation of that circuit gives a [y circuit for Ag.
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ADD is complete for AC® for a strong notion
of reduction (but not projections).

Theorem

Every AC® language can be computed by
a circuit with only a constant number of
ADD gates of polynomial fan-in, and no
other gates.

Proof
e Wilog. only = and A gates.
e —-gate: —x is the least significant
bit of 1 + x.
e A-gate: AT_; x; is the most signifi-
cant bit of xq - - - x, + 1.
e One ADD gate per layer, thanks to
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A new object

Definition (Monoids)

A monoid is a triplet (M, -, 1) where:
o Mis a set.
e - is an operation M x M — M that
is associative ((x-y)-z = x-(y-2)).
e 1is a neutral element of M (1-x =
x-1=x).
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— A generalization of groups.
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Examples

Examples

e x — 2x is a morphism from (N, +)
to itself.

e The length function is a morphism
from * to (N, +).

e The function ©* — ({0, 1}, V) that
maps a word to 1 if and only if it
has some letter a is a morphism.
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— This is the transition monoid of A. It makes more structure visible.
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< Much more complicated: need a structure theory of monoids (Green's theory).
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Theorem (Barrington, Compton, Straubing, Thérien)
Let L be a regular language with a neutral letter, then
L e AC® & L is star-free.

Proof i
e [ a regular language with a neutral

letter that is not star-free.

e |t is not aperiodic: there is x € M, st
Xw+l 75 XY

e Let g the smallest integer st
Xw+q — x¥.

e We want to reduce Mod, to L.

e Mod, ¢ AC® = L ¢ AC°.

e We prove the case g = 2.

Let u, v st (wlog.) ux“v € L and
ux“tly ¢ L.

Assume that x¥ and x¥*1 have same
size (thanks to the neutral letter).
Let f that send 0 to x“ and 1 to
Xw+1;

The reduction send w to

uf (wp) -« - F(wp)v.

This word is equivalent to
uxw+Parityc(w)v_

This is in L iff Parity(w) = 0.

Without a neutral letter, (aa)* is not star-free but is in ACC.
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A subword language is a language L for which there exists u such that L is the set of words
that have v as a subword.

Theorem
The regular languages with a neutral letter that can be computed by k-DNFs with constant
k are precisely the Boolean combination of subword languages.

— Can be extended to depth-3 but not depth-4 so far.
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