Algebraic Characterizations of Classes of Regular Languages in
DynFO

Corentin Barloy, Felix Tschirbs, Nils Vortmeier, Thomas Zeume

Incremental maintenance and DynFO

lala|bla|b]|a]e (aa)*b(a+Db)*

1/11

Incremental maintenance and DynFO

la|b][bla]b]a]¢(aa)b(a+b)

1/11

Incremental maintenance and DynFO

la|b]a]a|b]|a]¢(aa)*b(a+Db)*

1/11

Incremental maintenance and DynFO

lajalaa|b]ale(aa)*b(a+b)*

1/11

Incremental maintenance and DynFO

lalalafa]|b]a]e(aa)d(a+Db)

— Descriptive approach DynFO: use tables updated by first-order formulas

1/11

Incremental maintenance and DynFO

lalalafa]|b]a]e(aa)d(a+Db)

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is
even.

1/11

Incremental maintenance and DynFO

lalalafa]|b]a]e(aa)d(a+Db)

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is
even.

1/11

Incremental maintenance and DynFO

lalalafa]|b]a]e(aa)d(a+Db)

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is
even.

— Update of j on change at i: U=ieT3))

1/11

Incremental maintenance and DynFO

lalalafa]|b]a]e(aa)d(a+Db)

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is
even.

— Update of j on change at i: U=ieT3))
— Output: 3, First-b(j) A T())

1/11

Incremental maintenance and DynFO

la|bfa]a|b]|a]¢(aa)*b(a+Db)*

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is
even.

(0jof1]ofof1]

— Update of j on change at i: U=ieT3))
— Output: 3, First-b(j) A T())

1/11

Incremental maintenance and DynFO

la|bfa]a|b]|a]¢(aa)*b(a+Db)*

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is

even.
(0Jof1fofo]1]

— Update of j on change at i: U=>ieT3))

— Output: 3j, First-b(j) A T())

— This language is in DynFO but not in FO.

1/11

Incremental maintenance and DynFO

la|bfa]a|b]|a]¢(aa)*b(a+Db)*

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is

even.

(0Jof1fofo]1]
— Update of j on change at i: U=>ieT3))
— Output: 3j, First-b(j) A T())

— This language is in DynFO but not in FO.

Fine-grained analysis:

1/11

Incremental maintenance and DynFO

la|bfa]a|b]|a]¢(aa)*b(a+Db)*

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is

even.
(0Jof1fofo]1]

— Update of j on change at i: U=>ieT3))

— Output: 3j, First-b(j) A T())

— This language is in DynFO but not in FO.

Fine-grained analysis:
— Restricting alternations: DynProp, DynY i, Dyn,, ...

1/11

Incremental maintenance and DynFO

la|bfa]a|b]|a]¢(aa)*b(a+Db)*

— Descriptive approach DynFO: use tables updated by first-order formulas
— Table T: store whether of the parity of the number of as before every position is

even.
(0Jof1fofo]1]

— Update of j on change at i: U=>ieT3))

— Output: 3j, First-b(j) A T())

— This language is in DynFO but not in FO.
Fine-grained analysis:

— Restricting alternations: DynProp, DynY i, Dyn,, ...
— Restricting tables arity: UDynProp, UDynY;, UDynY,, ...

1/11

Regular languages

Already Studled DynPI’Op == Reg [Gelade, Marquardt, Schwentick 2012]

2/11

Regular languages

Already Studled DynPrOp == Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:

2/11

Regular languages

Already studied: DynProp = Reg

[Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:

— for every pair of states p, q, T, 4 stores all couples j < k such that w[j, k] ends in ¢
starting from p.

2/11

Regular languages

Already Studled DynPI’Op — Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:

— for every pair of states p, q, T, 4 stores all couples j < k such that w[j, k] ends in ¢
starting from p.

— Output: disjunction of T; ¢(min, max) for i initial and f final.

2/11

Regular languages

Already Studled DynPI’Op — Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:
— for every pair of states p, q, T, 4 stores all couples j < k such that w[j, k] ends in ¢
starting from p.
— Output: disjunction of T; ¢(min, max) for i initial and f final.
— Update of (j, k) for change a at i
— if j < i < k: disjunction over r = r' of Ty, A Ty .
— else: do nothing.

2/11

Regular languages

Already Studled DynPI’Op — Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:
— for every pair of states p, q, T, 4 stores all couples j < k such that w[j, k] ends in ¢
starting from p.
— Output: disjunction of T; ¢(min, max) for i initial and f final.
— Update of (j, k) for change a at i
— if j < i < k: disjunction over r = r' of Ty, A Ty .
— else: do nothing.

We restrict our attention to unary DynFO

2/11

Regular languages

Already Studled DynPI’Op — Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:
— for every pair of states p, q, T, 4 stores all couples j < k such that w[j, k] ends in ¢
starting from p.
— Output: disjunction of T; ¢(min, max) for i initial and f final.
— Update of (j, k) for change a at i
— if j < i < k: disjunction over r = r' of Ty, A Ty .
— else: do nothing.

We restrict our attention to unary DynFO
Already known: Reg C UDynFO [Hesse 2003]

2/11

Regular languages

Already Studled DynPI’Op — Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:
— for every pair of states p, q, T, 4 stores all couples j < k such that w[j, k] ends in ¢
starting from p.
— Output: disjunction of T; ¢(min, max) for i initial and f final.
— Update of (j, k) for change a at i
— if j < i < k: disjunction over r = r' of Ty, A Ty .
— else: do nothing.

We restrict our attention to unary DynFO

Already known: Reg C UDynFO [Hesse 2003]
— We refine this with algebral

2/11

The algebraic theory

finite automaton ~ finite monoid (M, -)

3/11

The algebraic theory finite set associative operation

v

finite automaton R finite monoid (I\/I

3/11

The algebraic theory finite set associative operation

v

finite automaton R finite monoid (I\/I

Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

3/11

The algebraic theory finite set associative operation

v

finite automaton T finite monoid (I\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

3/11

The algebraic theory finite set associative operation

v

finite automaton T finite monoid (/\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.

3/11

The algebraic theory finite set associative operation

v

finite automaton T finite monoid (/\/I

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.
— records if there is a b and the parity of the number of as before the first b.

3/11

The algebraic theory finite set associative operation
\ /
finite automaton T finite monoid (
recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.

— records if there is a b and the parity of the number of as before the first b.
— The operation is defined accordingly. (ex: a-aab = ab and aab - a = aab)

3/11

The algebraic theory finite set associative operation

g

finite automaton T finite monoid (

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.
— records if there is a b and the parity of the number of as before the first b.

— The operation is defined accordingly. (ex: a-aab = ab and aab - a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.

3/11

The algebraic theory finite set associative operation
\ /
finite automaton T finite monoid (
recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.
— records if there is a b and the parity of the number of as before the first b.
— The operation is defined accordingly. (ex: a-aab = ab and aab - a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.

— Given its minimal automaton, it corresponds to the set of transition functions with
composition.

3/11

The algebraic theory finite set associative operation

Rr

finite automaton T finite mon0|d

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.
— records if there is a b and the parity of the number of as before the first b.
— The operation is defined accordingly. (ex: a-aab = ab and aab - a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.

— Given its minimal automaton, it corresponds to the set of transition functions with
composition.

— Exhibit algebraic properties instead of combinatorial ones.

3/11

The algebraic theory finite set associative operation

Rr

finite automaton T finite mon0|d

recognize same languages
Take p: {a,b} — M extended to * by pu(ay---a,) = p(a1) -~ p(an)
— L recognized by p: L= p~1(P) for PC M

(aa)*b(a + b)* is recognized by M = {a, aa, aab, ab}.
— records if there is a b and the parity of the number of as before the first b.
— The operation is defined accordingly. (ex: a-aab = ab and aab - a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
— Given its minimal automaton, it corresponds to the set of transition functions with
composition.

— Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg C DynFO: Maintain the evaluation of infixes in a monoid.

3/11

The regular languages of UDyn2 5

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

daa d

aab

ab

4/11

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

J-classes:
set of x with
same MxM

daa

a

aab

ab

4/11

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

J-classes:
set of x with
same MxM

daa

a

aab

ab

}

R-classes: set of
x with same xM

4/11

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

daa d

e . b R-classes: set of
-classes: x with same xM
set of x with

same MxM ab

R/_/)
L-classes: set of x with same Mx

4/11

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

daa d

)
£
el _ aab R-classes: set of § %
sclasses: x with same xM g =
set of x with °
same MxM ab

R/_/)
L-classes: set of x with same Mx

4/11

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

daa d

)
£
el _ aab R-classes: set of § %
sclasses: x with same xM g =
set of x with °
same MxM ab

R/_/)
L-classes: set of x with same Mx

— If an infix evaluates in J, then the whole word evaluates > J.

4/11

Ideal structure

A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

daa d

)
£
el _ aab R-classes: set of § %
sclasses: x with same xM g =
set of x with °
same MxM ab

R/_/)
L-classes: set of x with same Mx

— If an infix evaluates in J, then the whole word evaluates > J.
— Every word has a decomposition of the form:

w1 Wy, Wiy +1 Wi, Wiy+1 W,
—_—
wy J T <g T1Wi+41

J

T2 <g T2Wiy41

Lm

4/11

The power of UDynX,

Theorem
All regular languages are in UDyn2 .

5/11

The power of UDynX,

Theorem
All regular languages are in UDyn2 .

Proof sketch: We show that we can compute the evaluation in any monoid M.

5/11

The power of UDynX,

Theorem
All regular languages are in UDyn2 .

Proof sketch: We show that we can compute the evaluation in any monoid M.

A table R, , for all J-class J and x € M.
— contains i iff the greatest infix in J starting at / evaluates to x.
— Similarly: tables L,

5/11

The power of UDynX,

Theorem
All regular languages are in UDyn2 .

Proof sketch: We show that we can compute the evaluation in any monoid M.

A table R, , for all J-class J and x € M.
— contains i iff the greatest infix in J starting at / evaluates to x.
— Similarly: tables L,

We can check if w(i, /] evaluates to x in ¥;:

Y=k <<y =,
— Vil < j < lgy1, there is no jump in J-class at j (thanks to L)
— there is a jump in J-class at each /¢ (thanks to L)
— the overall evaluation is x (thanks to R, and more work!)

5/11

The power of UDynX,

Theorem
All regular languages are in UDyn2 .

Proof sketch: We show that we can compute the evaluation in any monoid M.

A table R, , for all J-class J and x € M.
— contains i iff the greatest infix in J starting at / evaluates to x.
— Similarly: tables L,

We can check if w(i, /] evaluates to x in ¥;:

Y=k <<y =,
— Vil < j < lgy1, there is no jump in J-class at j (thanks to L)
— there is a jump in J-class at each /¢ (thanks to L)
— the overall evaluation is x (thanks to R, and more work!)

Thus we can answer membership in o

5/11

The power of UDynX,

Theorem
All regular languages are in UDyn2 .

Proof sketch: We show that we can compute the evaluation in any monoid M.

A table R, , for all J-class J and x € M.
— contains i iff the greatest infix in J starting at / evaluates to x.
— Similarly: tables L,

We can check if w(i, /] evaluates to x in ¥;:

Y=k <<y =,
— Vil < j < lgy1, there is no jump in J-class at j (thanks to L)
— there is a jump in J-class at each /¢ (thanks to L)
— the overall evaluation is x (thanks to R, and more work!)

Thus we can answer membership in o
Updates of R at i: there is an index j such that w[i,] evaluates to x and w[i, j + 1]

is > J.
5/11

The regular languages of UDynProp

Varieties

We used: maintain monoids = maintain all recognized languages

6/11

Varieties

We used: maintain monoids = maintain all recognized languages
— We want the converse.

6/11

Varieties

We used: maintain monoids = maintain all recognized languages
— We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:
» Boolean operations (U, N and L),
» quotients (a~'L and La™ 1),
> inverse morphisms (1 1(L)).

6/11

Varieties

We used: maintain monoids = maintain all recognized languages
— We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:
» Boolean operations (U, N and L),
» quotients (a~'L and La™ 1),

> inverse morphisms (1 1(L)).

UDynProp is a variety.

6/11

Varieties

We used: maintain monoids = maintain all recognized languages
— We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:
» Boolean operations (U, N and L),
» quotients (a~'L and La™ 1),

> inverse morphisms (1 1(L)).

UDynProp is a variety.

Theorem
Membership of a language in UDynFO only depends on its syntactic monoid.

6/11

Varieties

We used: maintain monoids = maintain all recognized languages
— We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:
» Boolean operations (U, N and L),
» quotients (a~'L and La™ 1),

> inverse morphisms (1 1(L)).

UDynProp is a variety.

Theorem
Membership of a language in UDynFO only depends on its syntactic monoid.

Usefull to define a class of languages by their syntactic monoids

6/11

Varieties

We used: maintain monoids = maintain all recognized languages
— We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:
» Boolean operations (U, N and L),
» quotients (a~'L and La™ 1),

> inverse morphisms (1 1(L)).

UDynProp is a variety.

Theorem
Membership of a language in UDynFO only depends on its syntactic monoid.

Usefull to define a class of languages by their syntactic monoids
— G is the class of languages whose syntactic monoid is a group

6/11

The power of UDynProp

Theorem
UDynProp N Reg = G

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?
— M is a group < the identity is the only x such that x? = x

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?

— M is a group < the identity is the only x such that x? = x
— Take M ¢ G and x # 1 such that x? = x

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?

— M is a group < the identity is the only x such that x? = x
— Take M ¢ G and x # 1 such that x? = x

— Consider p : {a, b}* — M such that p(b) =1 and p(a) = x

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?

— M is a group < the identity is the only x such that x? = x
— Take M ¢ G and x # 1 such that x? = x

— Consider p : {a, b}* — M such that p(b) =1 and p(a) = x
— It recognizes (a + b)*a(a + b)*

7/11

The power of UDynProp

Theorem
UDynProp N Reg = G

Upper bound: In a group, the evaluation of w[i,j] only depends on w[l,i] and w1,].
— Only maintain evaluation prefixes is enough to retrieve all infixes
— the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?

— M is a group < the identity is the only x such that x? = x
— Take M ¢ G and x # 1 such that x? = x

— Consider p : {a, b}* — M such that p(b) =1 and p(a) = x
— It recognizes (a + b)*a(a + b)*

— This language in not in UDynProp [Schwentick, Zeume 2015]

7/11

|
The regular languages of UDyn2 |

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

— UDynX{ is a positive variety

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

— UDynX{ is a positive variety

Membership does not depend only on the syntactic monoid.

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

— UDynX{ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition
An ordered monoid is a monoid equiped with an order <.

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

— UDynX{ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition
An ordered monoid is a monoid equiped with an order <.

— L is recognized by (M, <) if there is an upset P and a morphism p st L = u~1(P)

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

— UDynX{ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition
An ordered monoid is a monoid equiped with an order <.

— L is recognized by (M, <) if there is an upset P and a morphism p st L = u~1(P)
— There is a notion of syntactic ordered monoid

8/11

Positive varieties

Zf: formulas of the form dxy, -, xx, (¢ where ¢ has no negations.
— All formulas used so far had no negations.

UDynX; (and UDynX1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

— UDynX{ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition
An ordered monoid is a monoid equiped with an order <.

— L is recognized by (M, <) if there is an upset P and a morphism p st L = u~1(P)
— There is a notion of syntactic ordered monoid

— Membership of a language in a positive variety only depends on its syntactic
ordered monoid

8/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

a,b _

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products
Sequential composition of automata A; and Ay: on input w, label w by the states it

reaches in A; and feed it to A>.

H@/\;@ H&%

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

a,b _ _
H@/a,b\;@ NS LI
J
a|bla|b|b]|b

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

a,b _ _
H@/a,b\;@ ~®—52)
!
a|bla|b|b|b

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

Wreath product: Algebraic counterpart of the sequential composition, denoted

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it
reaches in A; and feed it to A>.

albla|lb|b|b
1/0(1|0|1]|0

Wreath product: Algebraic counterpart of the sequential composition, denoted

JT is the class of languages whose syntactic ordered monoid satisfy 1 < x, for all x

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it

reaches in A; and feed it to A>.

a,b _ _
. (20) 6
@O RO Iy
a,b
1
albla|b|b]|b
1/0(1]0]1]|0

Wreath product: Algebraic counterpart of the sequential composition, denoted

JT is the class of languages whose syntactic ordered monoid satisfy 1 < x, for all x

— Captures 21

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it

reaches in A; and feed it to A>.

a,b _ _
. (20) 6
@O RO Iy
a,b
1
albla|b|b]|b
1/0(1]0]1]|0

Wreath product: Algebraic counterpart of the sequential composition, denoted

JT is the class of languages whose syntactic ordered monoid satisfy 1 < x, for all x

— Captures 21

We will look at J* « G

9/11

Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it

reaches in A; and feed it to A>.

a,b _ _
. (20) 6
@O RO Iy
a,b
1
albla|b|b]|b
1/0(1]0]1]|0

Wreath product: Algebraic counterpart of the sequential composition, denoted

JT is the class of languages whose syntactic ordered monoid satisfy 1 < x, for all x

— Captures 21

We will look at J* « G

— The complement of (ab)* is inside.

9/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]
— (M, <) isin J* * G < for all x such that x?> = x, we have x > 1

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]

— (M, <) isin JT x G & for all x such that x> = x, we have x > 1
— Take (M, <) ¢ J* % G and x such that x # 1

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]
— (M, <) isin J* * G < for all x such that x?> = x, we have x > 1

— Take (M, <) ¢ J* % G and x such that x # 1

— Consider p : {a, b}* — (M, <) such that p(b) =1 and p(a) = x

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]
— (M, <) isin J* * G < for all x such that x?> = x, we have x > 1

— Take (M, <) ¢ J* % G and x such that x # 1

— Consider p : {a, b}* — (M, <) such that p(b) =1 and p(a) = x

— It recognizes b*: x is not in the upset of 1

10/11

The power of UDynX

Theorem
UDynX; NReg=J" xG

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]
— (M, <) isin J* * G < for all x such that x?> = x, we have x > 1

— Take (M, <) ¢ J* % G and x such that x # 1

— Consider p : {a, b}* — (M, <) such that p(b) =1 and p(a) = x

— It recognizes b*: x is not in the upset of 1

— This language can be shown to not be in UDyn¥

10/11

Conclusion

The only problem left is to identify the regular languages of UDyn% ;.

11/11

Conclusion

The only problem left is to identify the regular languages of UDyn% ;.
— Strictly more powerful than UDyn¥: witnessed by b* and (a + b)*aa(a + b)*.

11/11

Conclusion

The only problem left is to identify the regular languages of UDyn% ;.
— Strictly more powerful than UDyn¥: witnessed by b* and (a + b)*aa(a + b)*.
— Conjecture: J* G C UDynX; C ¥ xG

11/11

Conclusion

The only problem left is to identify the regular languages of UDyn% ;.

— Strictly more powerful than UDyn¥: witnessed by b* and (a + b)*aa(a + b)*.
— Conjecture: J* G C UDynX; C ¥ xG

— We lack lower bounds!

11/11

Conclusion

The only problem left is to identify the regular languages of UDyn% ;.

— Strictly more powerful than UDyn¥: witnessed by b* and (a + b)*aa(a + b)*.
— Conjecture: J* G C UDynX; C ¥ xG

— We lack lower bounds!

Recap:

Dynamic class | UDynProp | UDynX{ | UDyn¥,
Regular languages ‘ G ‘ JTxG ‘ Reg

11/11

