

Algebraic Characterizations of Classes of Regular Languages in DynFO

Corentin Barloy, Felix Tschirbs, Nils Vortmeier, Thomas Zeume

Incremental maintenance and DynFO

a	a	b	a	b	a
---	---	---	---	---	---

$$\in (aa)^*b(a + b)^*$$

Incremental maintenance and DynFO

a	b	b	a	b	a
---	----------	---	---	---	---

$$\notin (aa)^*b(a + b)^*$$

Incremental maintenance and DynFO

a	b	a	a	b	a
---	---	---	---	---	---

 $\notin (aa)^*b(a + b)^*$

Incremental maintenance and DynFO

a	a	a	a	b	a
---	---	---	---	---	---

$$\in (aa)^*b(a + b)^*$$

Incremental maintenance and DynFO

a	a	a	a	b	a
---	---	---	---	---	---

$$\in (aa)^*b(a + b)^*$$

→ Descriptive approach DynFO: use [tables](#) updated by [first-order formulas](#)

Incremental maintenance and DynFO

a	a	a	a	b	a
---	---	---	---	---	---

$$\in (aa)^*b(a+b)^*$$

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table T** : store whether of the **parity** of the number of a s before every position is even.

Incremental maintenance and DynFO

a	a	a	a	b	a
---	---	---	---	---	---

$$\in (aa)^*b(a + b)^*$$

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table T** : store whether of the **parity** of the number of as before every position is even.

0	1	0	1	1	0
---	---	---	---	---	---

Incremental maintenance and DynFO

a	a	a	a	b	a
---	---	---	---	---	---

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table** T : store whether of the **parity** of the number of as before every position is even.

0	1	0	1	1	0
---	---	---	---	---	---

- **Update** of j on change at i :
$$(j \geq i \Leftrightarrow \neg T(j))$$

Incremental maintenance and DynFO

a	a	a	a	b	a
---	---	---	---	---	---

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table T** : store whether of the **parity** of the number of as before every position is even.

0	1	0	1	1	0
---	---	---	---	---	---

- **Update** of j on change at i : $(j \geq i \Leftrightarrow \neg T(j))$
- **Output**: $\exists j, \text{First-}b(j) \wedge T(j)$

Incremental maintenance and DynFO

a	b	a	a	b	a
---	---	---	---	---	---

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table T** : store whether of the **parity** of the number of as before every position is even.

0	0	1	0	0	1
---	---	---	---	---	---

- **Update** of j on change at i : $(j \geq i \Leftrightarrow \neg T(j))$
- **Output**: $\exists j, \text{First-b}(j) \wedge T(j)$

Incremental maintenance and DynFO

a	b	a	a	b	a
---	---	---	---	---	---

$\notin (aa)^*b(a + b)^*$

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table** T : store whether of the **parity** of the number of as before every position is even.

0	0	1	0	0	1
---	---	---	---	---	---

- **Update** of j on change at i : $(j \geq i \Leftrightarrow \neg T(j))$
- **Output**: $\exists j, \text{First-}b(j) \wedge T(j)$
- This language is in **DynFO** but not in **FO**.

Incremental maintenance and DynFO

a	b	a	a	b	a
---	---	---	---	---	---

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table** T : store whether of the **parity** of the number of as before every position is even.

0	0	1	0	0	1
---	---	---	---	---	---

- **Update** of j on change at i : $(j \geq i \Leftrightarrow \neg T(j))$
- **Output**: $\exists j, \text{First-}b(j) \wedge T(j)$
- This language is in **DynFO** but not in **FO**.

Fine-grained analysis:

Incremental maintenance and DynFO

a	b	a	a	b	a
---	---	---	---	---	---

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table** T : store whether of the **parity** of the number of as before every position is even.

0	0	1	0	0	1
---	---	---	---	---	---

- **Update** of j on change at i : $(j \geq i \Leftrightarrow \neg T(j))$
- **Output**: $\exists j, \text{First-}b(j) \wedge T(j)$
- This language is in **DynFO** but not in **FO**.

Fine-grained analysis:

- Restricting **alternations**: DynProp, Dyn Σ_1 , Dyn Σ_2 , ...

Incremental maintenance and DynFO

a	b	a	a	b	a
---	---	---	---	---	---

- Descriptive approach DynFO: use **tables** updated by **first-order formulas**
- **Table** T : store whether of the **parity** of the number of as before every position is even.

0	0	1	0	0	1
---	---	---	---	---	---

- **Update** of j on change at i : $(j \geq i \Leftrightarrow \neg T(j))$
- **Output**: $\exists j, \text{First-}b(j) \wedge T(j)$
- This language is in **DynFO** but not in **FO**.

Fine-grained analysis:

- Restricting **alternations**: DynProp, Dyn Σ_1 , Dyn Σ_2 , ...
- Restricting **tables arity**: UDynProp, UDyn Σ_1 , UDyn Σ_2 , ...

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary tables** for a **DFA** A :

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary** tables for a **DFA** A :

→ for every pair of states p, q , $T_{p,q}$ stores all couples $j \leq k$ such that $w[j, k]$ ends in q starting from p .

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary** tables for a **DFA** A :

- for every pair of states p, q , $T_{p,q}$ stores all couples $j \leq k$ such that $w[j, k]$ ends in q starting from p .
- **Output**: disjunction of $T_{i,f}(\min, \max)$ for i initial and f final.

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary** tables for a **DFA** A :

- for every pair of states p, q , $T_{p,q}$ stores all couples $j \leq k$ such that $w[j, k]$ ends in q starting from p .
- **Output**: disjunction of $T_{i,f}(\min, \max)$ for i initial and f final.
- **Update** of (j, k) for change a at i :
 - if $j \leq i \leq k$: disjunction over $r \xrightarrow{a} r'$ of $T_{p,r} \wedge T_{r',q}$.
 - else: do nothing.

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary** tables for a **DFA** A :

- for every pair of states p, q , $T_{p,q}$ stores all couples $j \leq k$ such that $w[j, k]$ ends in q starting from p .
- **Output**: disjunction of $T_{i,f}(\min, \max)$ for i initial and f final.
- **Update** of (j, k) for change a at i :
 - if $j \leq i \leq k$: disjunction over $r \xrightarrow{a} r'$ of $T_{p,r} \wedge T_{r',q}$.
 - else: do nothing.

We restrict our attention to **unary** DynFO

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary** tables for a **DFA** A :

- for every pair of states p, q , $T_{p,q}$ stores all couples $j \leq k$ such that $w[j, k]$ ends in q starting from p .
- **Output**: disjunction of $T_{i,f}(\min, \max)$ for i initial and f final.
- **Update** of (j, k) for change a at i :
 - if $j \leq i \leq k$: disjunction over $r \xrightarrow{a} r'$ of $T_{p,r} \wedge T_{r',q}$.
 - else: do nothing.

We restrict our attention to **unary** DynFO

Already known: $\text{Reg} \subseteq \text{UDynFO}$ [Hesse 2003]

Regular languages

Already studied: $\text{DynProp} = \text{Reg}$ [Gelade, Marquardt, Schwentick 2012]

The proof only uses **binary** tables for a **DFA** A :

- for every pair of states p, q , $T_{p,q}$ stores all couples $j \leq k$ such that $w[j, k]$ ends in q starting from p .
- **Output**: disjunction of $T_{i,f}(\min, \max)$ for i initial and f final.
- **Update** of (j, k) for change a at i :
 - if $j \leq i \leq k$: disjunction over $r \xrightarrow{a} r'$ of $T_{p,r} \wedge T_{r',q}$.
 - else: do nothing.

We restrict our attention to **unary** DynFO

Already known: $\text{Reg} \subseteq \text{UDynFO}$ [Hesse 2003]

→ We refine this with **algebra**!

The algebraic theory

finite automaton \approx finite monoid (M, \cdot)

The algebraic theory

finite automaton

\approx

finite set associative operation
finite monoid (M, \cdot)

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.
 \rightarrow records if there is a b and the parity of the number of a s before the first b .

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by μ : $L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.

→ records if there is a b and the parity of the number of a s before the first b .

→ The operation is defined accordingly. (ex: $a \cdot aab = ab$ and $aab \cdot a = aab$)

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.

→ records if there is a b and the parity of the number of a s before the first b .

→ The operation is defined accordingly. (ex: $a \cdot aab = ab$ and $aab \cdot a = aab$)

Syntactic monoid of a language: smallest monoid recognizing it.

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.

\rightarrow records if there is a b and the parity of the number of a s before the first b .
 \rightarrow The operation is defined accordingly. (ex: $a \cdot aab = ab$ and $aab \cdot a = aab$)

Syntactic monoid of a language: smallest monoid recognizing it.

\rightarrow Given its minimal automaton, it corresponds to the set of transition functions with composition.

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.

- records if there is a b and the parity of the number of a s before the first b .
- The operation is defined accordingly. (ex: $a \cdot aab = ab$ and $aab \cdot a = aab$)

Syntactic monoid of a language: smallest monoid recognizing it.

- Given its minimal automaton, it corresponds to the set of transition functions with composition.
- Exhibit algebraic properties instead of combinatorial ones.

The algebraic theory

Take $\mu: \{a, b\} \rightarrow M$ extended to Σ^* by $\mu(a_1 \cdots a_n) = \mu(a_1) \cdots \mu(a_n)$
 $\rightarrow L$ recognized by $\mu: L = \mu^{-1}(P)$ for $P \subseteq M$

$(aa)^*b(a + b)^*$ is recognized by $M = \{a, aa, aab, ab\}$.

→ records if there is a b and the parity of the number of a s before the first b .
→ The operation is defined accordingly. (ex: $a \cdot aab = ab$ and $aab \cdot a = aab$)

Syntactic monoid of a language: smallest monoid recognizing it.

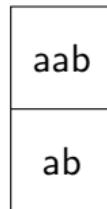
→ Given its minimal automaton, it corresponds to the set of transition functions with composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of $\text{Reg} \subseteq \text{DynFO}$: Maintain the evaluation of infixes in a monoid.

The regular languages of $UDyn\Sigma_2$

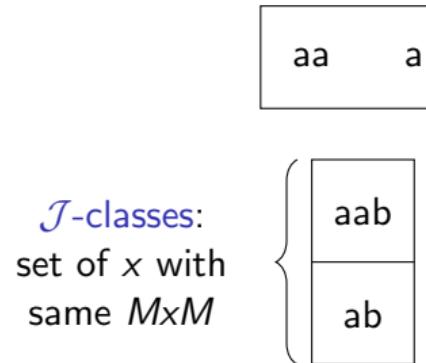
Ideal structure

A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



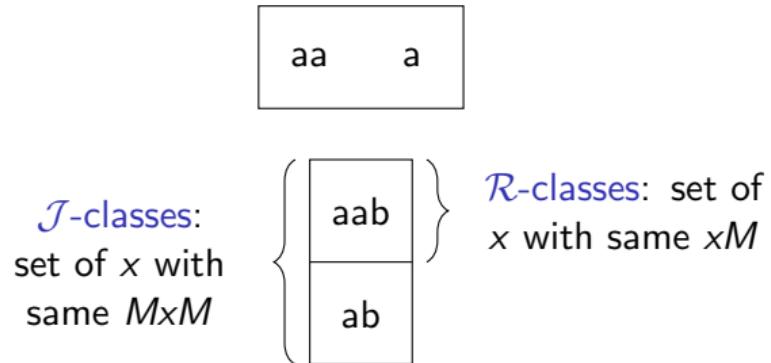
Ideal structure

A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



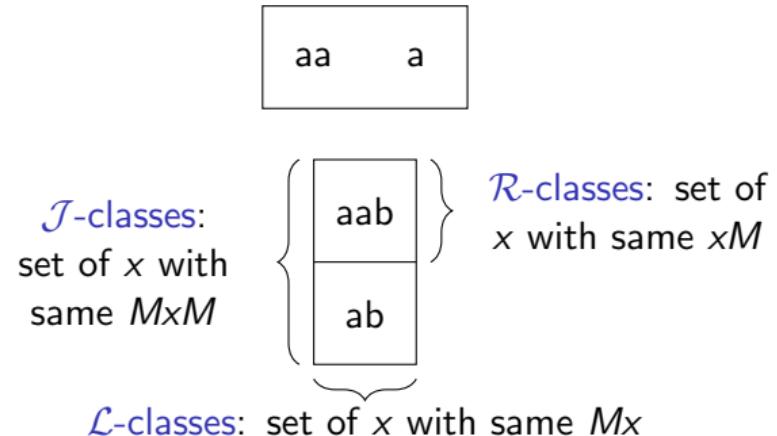
Ideal structure

A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



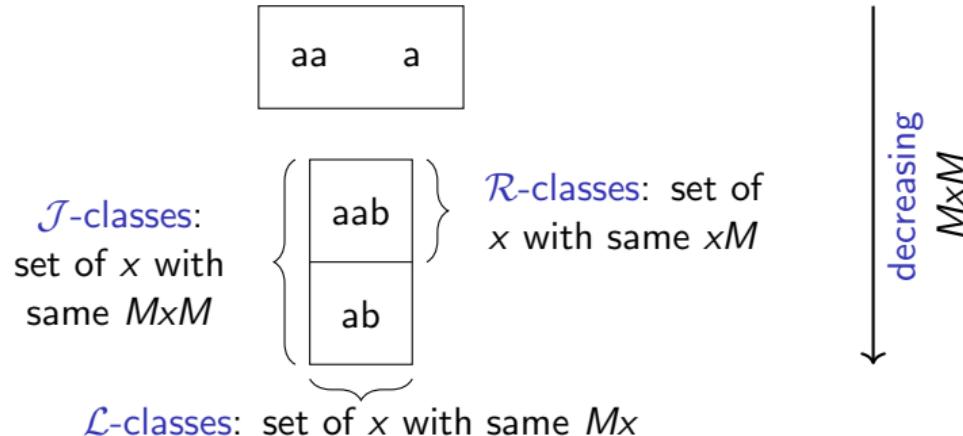
Ideal structure

A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



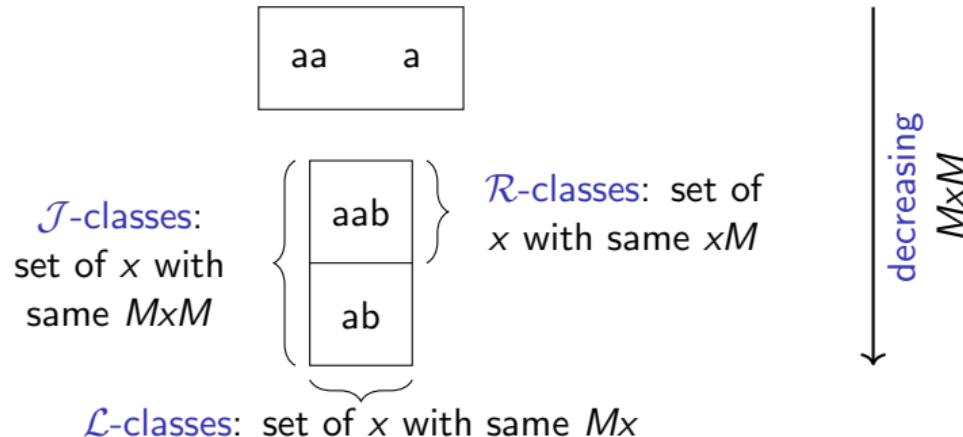
Ideal structure

A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



Ideal structure

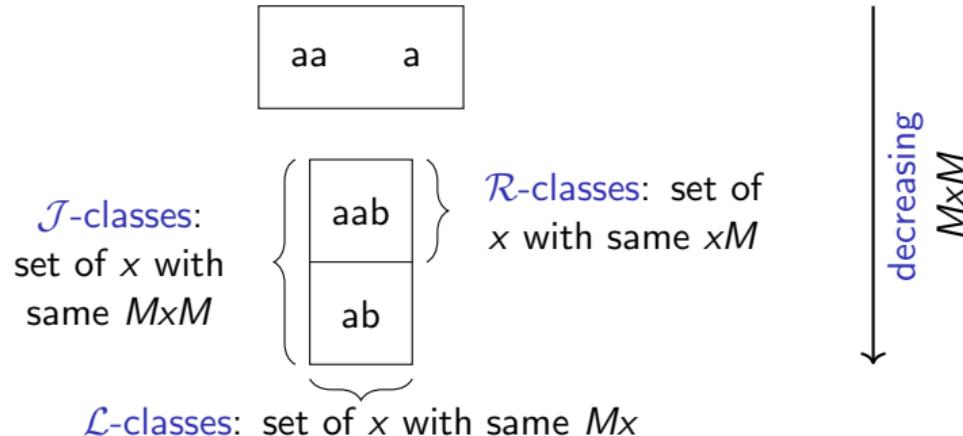
A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



→ If an infix evaluates in J , then the whole word evaluates $\geq J$.

Ideal structure

A **division-based** representation of the syntactic monoid of $(aa)^*b(a + b)^*$:



- If an infix evaluates in J , then the whole word evaluates $\geq J$.
- Every word has a **decomposition** of the form:

$$\begin{array}{ccccccccccccccccc} w_1 & \dots & w_{l_1} & w_{l_1+1} & \dots & w_{l_2} & w_{l_2+1} & \dots & w_n \\ \underbrace{w_1 \quad \mathcal{J} \quad x_1 \quad <_{\mathcal{J}} \quad x_1 w_{l_1+1}}_{\mathcal{J}} \\ \underbrace{x_2 \quad <_{\mathcal{J}} \quad x_2 w_{l_2+1}}_{\mathcal{J}} \\ \vdots \\ \underbrace{x_m}_{\mathcal{J}} \end{array}$$

The power of UDyn Σ_2

Theorem

All [regular languages](#) are in $\text{UDyn}\Sigma_2$.

The power of $UDyn\Sigma_2$

Theorem

All [regular languages](#) are in $UDyn\Sigma_2$.

Proof sketch: We show that we can compute the evaluation in any [monoid](#) M .

The power of $\text{UDyn}\Sigma_2$

Theorem

All **regular languages** are in $\text{UDyn}\Sigma_2$.

Proof sketch: We show that we can compute the evaluation in any **monoid** M .

A table $R_{J,x}$ for all \mathcal{J} -class J and $x \in M$.

→ contains i iff the **greatest infix in J** starting at i evaluates to x .

→ Similarly: tables $L_{J,x}$

The power of $\text{UDyn}\Sigma_2$

Theorem

All **regular languages** are in $\text{UDyn}\Sigma_2$.

Proof sketch: We show that we can compute the evaluation in any **monoid** M .

A table $R_{J,x}$ for all \mathcal{J} -class J and $x \in M$.

→ contains i iff the **greatest infix in J** starting at i evaluates to x .

→ Similarly: tables $L_{J,x}$

We can check if $w[i,j]$ evaluates to x in Σ_2 :

$\exists i = l_1 < \dots < l_m = j$,

→ $\forall l_k \leq j < l_{k+1}$, there is **no jump** in \mathcal{J} -class at j (thanks to L)

→ there is a **jump** in \mathcal{J} -class at each l_k (thanks to L)

→ the overall evaluation is x (thanks to R , and more work!)

The power of $\text{UDyn}\Sigma_2$

Theorem

All **regular languages** are in $\text{UDyn}\Sigma_2$.

Proof sketch: We show that we can compute the evaluation in any **monoid** M .

A table $R_{J,x}$ for all \mathcal{J} -class J and $x \in M$.

→ contains i iff the **greatest infix in J** starting at i evaluates to x .

→ Similarly: tables $L_{J,x}$

We can check if $w[i,j]$ evaluates to x in Σ_2 :

$\exists i = l_1 < \dots < l_m = j$,

→ $\forall l_k \leq j < l_{k+1}$, there is **no jump** in \mathcal{J} -class at j (thanks to L)

→ there is a **jump** in \mathcal{J} -class at each l_k (thanks to L)

→ the overall evaluation is x (thanks to R , and more work!)

Thus we can **answer** membership in Σ_2

The power of $\text{UDyn}\Sigma_2$

Theorem

All **regular languages** are in $\text{UDyn}\Sigma_2$.

Proof sketch: We show that we can compute the evaluation in any **monoid** M .

A table $R_{J,x}$ for all \mathcal{J} -class J and $x \in M$.

→ contains i iff the **greatest infix in J** starting at i evaluates to x .

→ Similarly: tables $L_{J,x}$

We can check if $w[i,j]$ evaluates to x in Σ_2 :

$\exists i = l_1 < \dots < l_m = j$,

→ $\forall l_k \leq j < l_{k+1}$, there is **no jump** in \mathcal{J} -class at j (thanks to L)

→ there is a **jump** in \mathcal{J} -class at each l_k (thanks to L)

→ the overall evaluation is x (thanks to R , and more work!)

Thus we can **answer** membership in Σ_2

Updates of $R_{J,x}$ at i : there is an index j such that $w[i,j]$ evaluates to x and $w[i,j+1]$ is $> J$.

The regular languages of UDynProp

Varieties

We used: maintain **monoids** \Rightarrow maintain all recognized **languages**

Varieties

We used: maintain **monoids** \Rightarrow maintain all recognized **languages**

\rightarrow We want the **converse**.

Varieties

We used: maintain monoids \Rightarrow maintain all recognized languages

\rightarrow We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:

- ▶ Boolean operations (\cup , \cap and L^c),
- ▶ quotients ($a^{-1}L$ and La^{-1}),
- ▶ inverse morphisms ($\mu^{-1}(L)$).

Varieties

We used: maintain monoids \Rightarrow maintain all recognized languages

\rightarrow We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:

- ▶ Boolean operations (\cup , \cap and L^c),
- ▶ quotients ($a^{-1}L$ and La^{-1}),
- ▶ inverse morphisms ($\mu^{-1}(L)$).

UDynProp is a variety.

Varieties

We used: maintain monoids \Rightarrow maintain all recognized languages

→ We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:

- ▶ Boolean operations (\cup , \cap and L^c),
- ▶ quotients ($a^{-1}L$ and La^{-1}),
- ▶ inverse morphisms ($\mu^{-1}(L)$).

UDynProp is a variety.

Theorem

Membership of a language in UDynFO only depends on its syntactic monoid.

Varieties

We used: maintain monoids \Rightarrow maintain all recognized languages

→ We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:

- ▶ Boolean operations (\cup , \cap and L^c),
- ▶ quotients ($a^{-1}L$ and La^{-1}),
- ▶ inverse morphisms ($\mu^{-1}(L)$).

UDynProp is a variety.

Theorem

Membership of a language in UDynFO only depends on its syntactic monoid.

Usefull to define a class of languages by their syntactic monoids

Varieties

We used: maintain monoids \Rightarrow maintain all recognized languages

\rightarrow We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:

- ▶ Boolean operations (\cup , \cap and L^c),
- ▶ quotients ($a^{-1}L$ and La^{-1}),
- ▶ inverse morphisms ($\mu^{-1}(L)$).

UDynProp is a variety.

Theorem

Membership of a language in UDynFO only depends on its syntactic monoid.

Usefull to define a class of languages by their syntactic monoids

\rightarrow **G** is the class of languages whose syntactic monoid is a group

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a [group](#), the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a [group](#), the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation [prefixes](#) is enough to retrieve all [infixes](#)

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a [group](#), the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation [prefixes](#) is enough to retrieve all [infixes](#)
→ the naive algorithm can be improved with [unary](#) tables.

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a [group](#), the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation [prefixes](#) is enough to retrieve all [infixes](#)
→ the naive algorithm can be improved with [unary](#) tables.

Lower bound: How are the monoids that are not groups?

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a [group](#), the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation [prefixes](#) is enough to retrieve all [infixes](#)
→ the naive algorithm can be improved with [unary](#) tables.

Lower bound: How are the monoids that are not groups?

→ M is a group \Leftrightarrow the identity is the only x such that $x^2 = x$

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a [group](#), the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation [prefixes](#) is enough to retrieve all [infixes](#)
→ the naive algorithm can be improved with [unary](#) tables.

Lower bound: How are the monoids that are not groups?

→ M is a group \Leftrightarrow the identity is the only x such that $x^2 = x$
→ Take $M \notin \mathbf{G}$ and $x \neq 1$ such that $x^2 = x$

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a **group**, the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation **prefixes** is enough to retrieve all **infixes**
→ the naive algorithm can be improved with **unary** tables.

Lower bound: How are the monoids that are not groups?

- M is a group \Leftrightarrow the identity is the only x such that $x^2 = x$
- Take $M \notin \mathbf{G}$ and $x \neq 1$ such that $x^2 = x$
- Consider $\mu : \{a, b\}^* \rightarrow M$ such that $\mu(b) = 1$ and $\mu(a) = x$

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a **group**, the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation **prefixes** is enough to retrieve all **infixes**
→ the naive algorithm can be improved with **unary** tables.

Lower bound: How are the monoids that are not groups?

- M is a group \Leftrightarrow the identity is the only x such that $x^2 = x$
- Take $M \notin \mathbf{G}$ and $x \neq 1$ such that $x^2 = x$
- Consider $\mu : \{a, b\}^* \rightarrow M$ such that $\mu(b) = 1$ and $\mu(a) = x$
- It recognizes $(a + b)^* a (a + b)^*$

The power of UDynProp

Theorem

$$\text{UDynProp} \cap \text{Reg} = \mathbf{G}$$

Upper bound: In a **group**, the evaluation of $w[i, j]$ only depends on $w[1, i]$ and $w[1, j]$.
→ Only maintain evaluation **prefixes** is enough to retrieve all **infixes**
→ the naive algorithm can be improved with **unary** tables.

Lower bound: How are the monoids that are not groups?

- M is a group \Leftrightarrow the identity is the only x such that $x^2 = x$
- Take $M \notin \mathbf{G}$ and $x \neq 1$ such that $x^2 = x$
- Consider $\mu : \{a, b\}^* \rightarrow M$ such that $\mu(b) = 1$ and $\mu(a) = x$
- It recognizes $(a + b)^* a (a + b)^*$
- This language is not in UDynProp

[Schwentick, Zeume 2015]

The regular languages of $UDyn\Sigma_1^+$

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

UDyn Σ_1^+ (and UDyn Σ_1) are not closed under complement.

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a **positive variety** if it is closed under: **Union**, **intersection**, **quotients** and **inverse morphisms**.

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a positive variety if it is closed under: Union, intersection, quotients and inverse morphisms.

→ $\text{UDyn}\Sigma_1^+$ is a positive variety

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a **positive variety** if it is closed under: **Union**, **intersection**, **quotients** and **inverse morphisms**.

→ $\text{UDyn}\Sigma_1^+$ is a **positive variety**

Membership does not depend only on the syntactic monoid.

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a positive variety if it is closed under: Union, intersection, quotients and inverse morphisms.

→ $\text{UDyn}\Sigma_1^+$ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition

An ordered monoid is a monoid equipped with an order \leq .

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a positive variety if it is closed under: Union, intersection, quotients and inverse morphisms.

→ $\text{UDyn}\Sigma_1^+$ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition

An ordered monoid is a monoid equipped with an order \leq .

→ L is recognized by (M, \leq) if there is an upset P and a morphism μ st $L = \mu^{-1}(P)$

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a positive variety if it is closed under: Union, intersection, quotients and inverse morphisms.

→ $\text{UDyn}\Sigma_1^+$ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition

An ordered monoid is a monoid equipped with an order \leq .

→ L is recognized by (M, \leq) if there is an upset P and a morphism μ st $L = \mu^{-1}(P)$

→ There is a notion of syntactic ordered monoid

Positive varieties

Σ_1^+ : formulas of the form $\exists x_1, \dots, x_k, \varphi$ where φ has no negations.

→ All formulas used so far had no negations.

$\text{UDyn}\Sigma_1^+$ (and $\text{UDyn}\Sigma_1$) are not closed under complement.

Definition

A set of languages is a positive variety if it is closed under: Union, intersection, quotients and inverse morphisms.

→ $\text{UDyn}\Sigma_1^+$ is a positive variety

Membership does not depend only on the syntactic monoid.

Definition

An ordered monoid is a monoid equipped with an order \leq .

→ L is recognized by (M, \leq) if there is an upset P and a morphism μ st $L = \mu^{-1}(P)$

→ There is a notion of syntactic ordered monoid

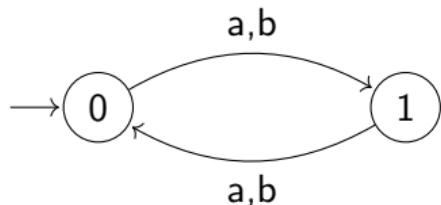
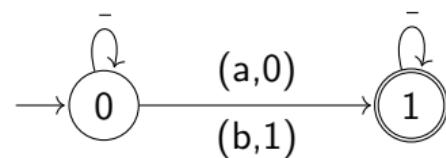
→ Membership of a language in a positive variety only depends on its syntactic ordered monoid

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

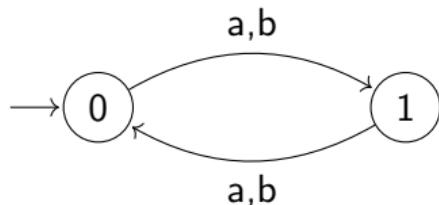
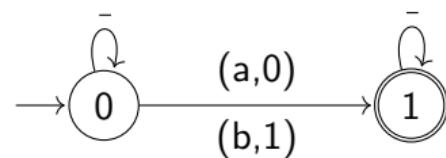
Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath products

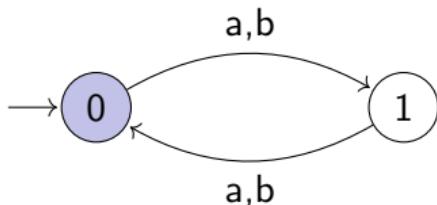
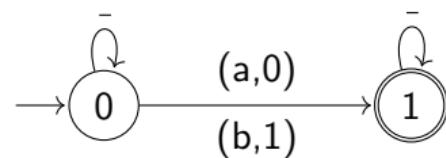
Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



a	b	a	b	b	b

Wreath products

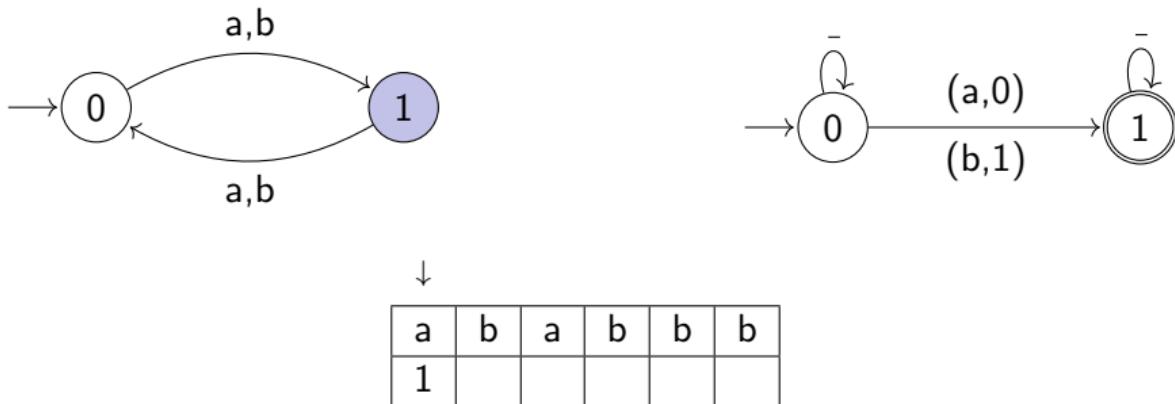
Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



a	b	a	b	b	b

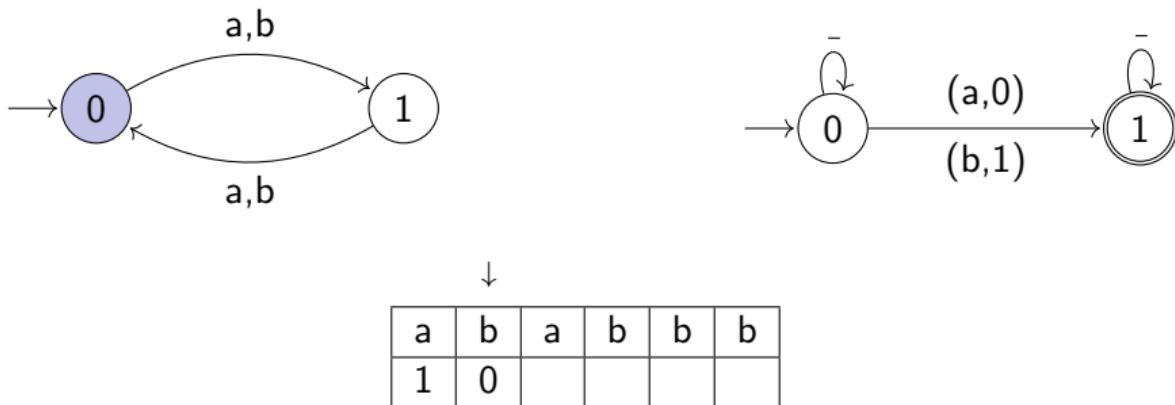
Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

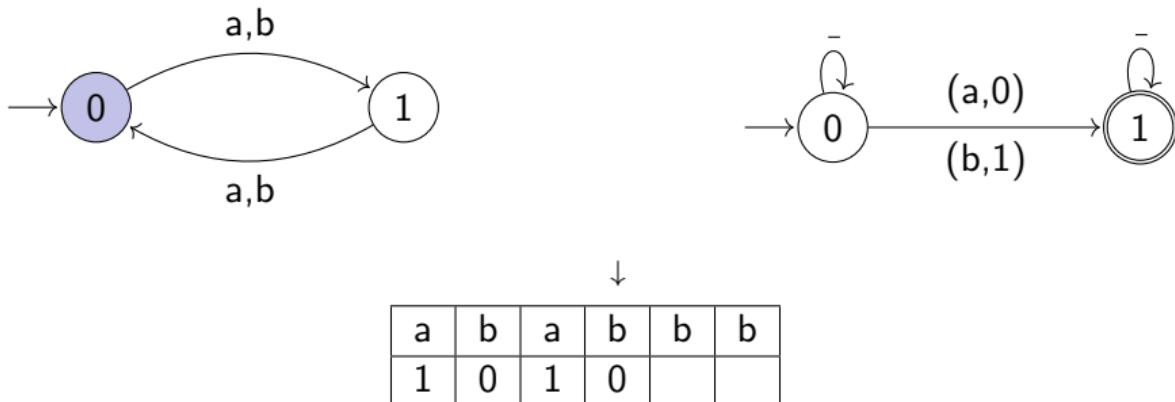


↓

a	b	a	b	b	b
1	0	1			

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

↓

a	b	a	b	b	b
1	0	1	0	1	

Wreath products

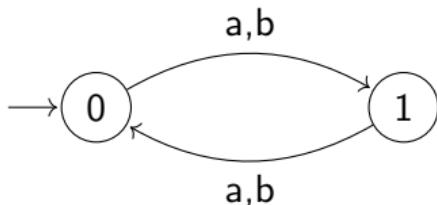
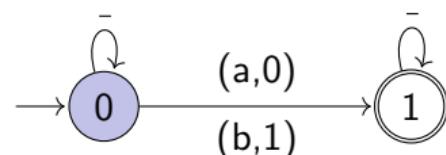
Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

↓

a	b	a	b	b	b
1	0	1	0	1	0

Wreath products

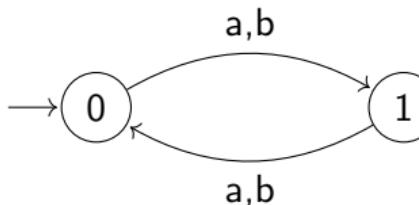
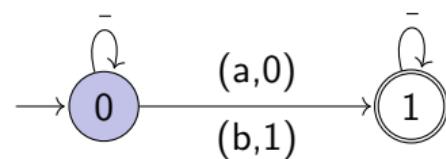
Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



a	b	a	b	b	b
1	0	1	0	1	0

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

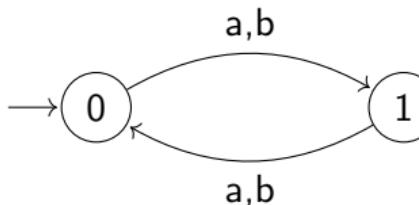
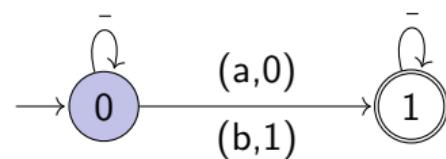


↓

a	b	a	b	b	b
1	0	1	0	1	0

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



↓

a	b	a	b	b	b
1	0	1	0	1	0

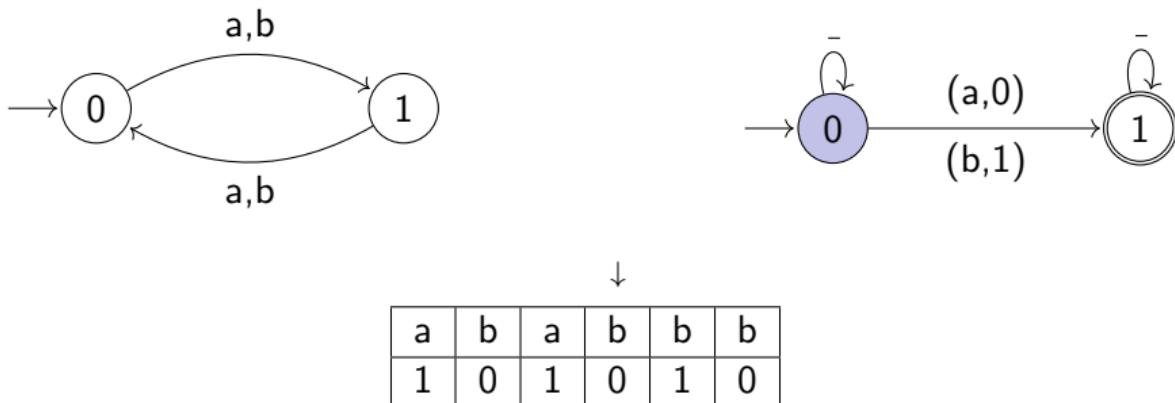
Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

$$\begin{array}{|c|c|c|c|c|c|c|} \hline a & b & a & b & b & b \\ \hline 1 & 0 & 1 & 0 & 1 & 0 \\ \hline \end{array}$$

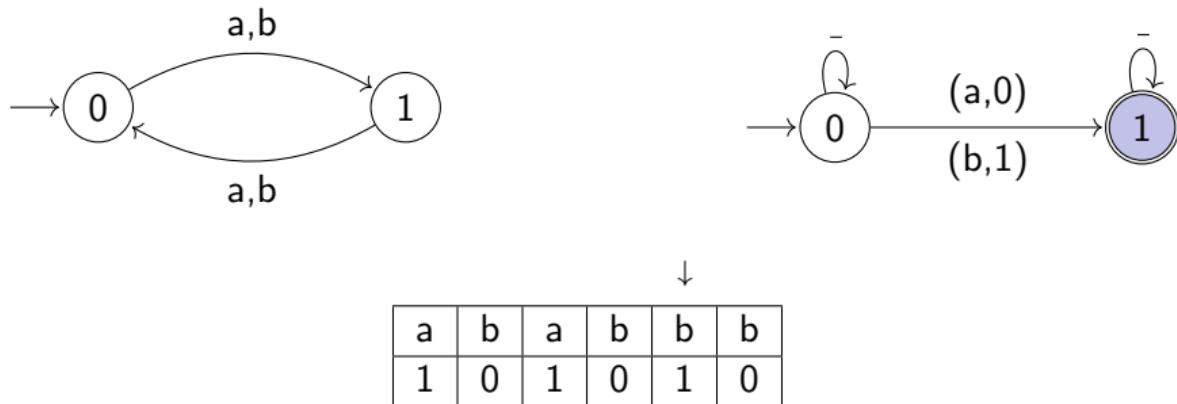
Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



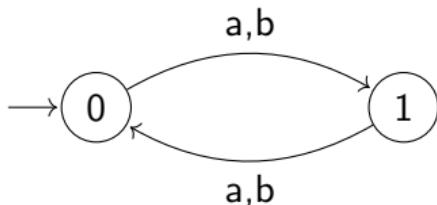
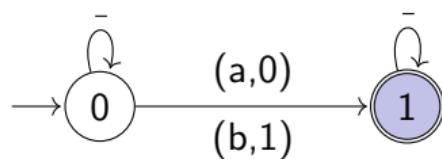
Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

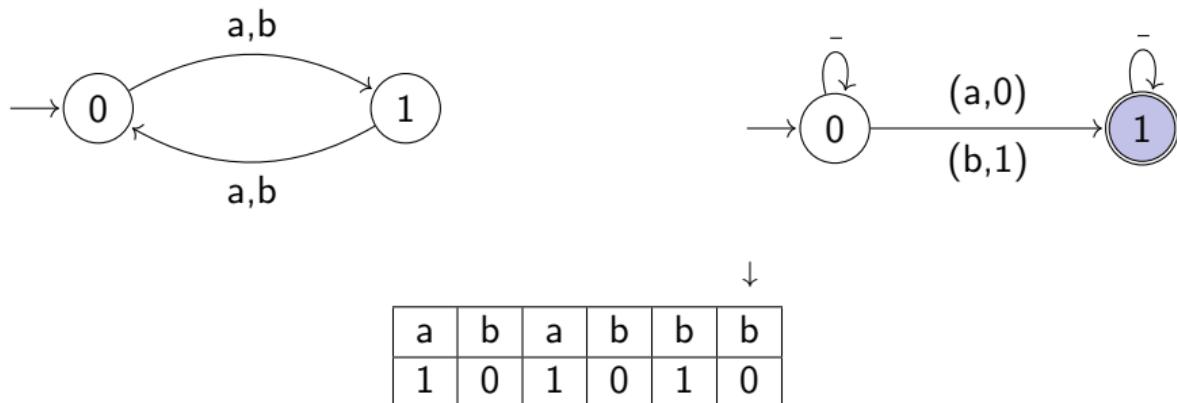


↓

a	b	a	b	b	b
1	0	1	0	1	0

Wreath products

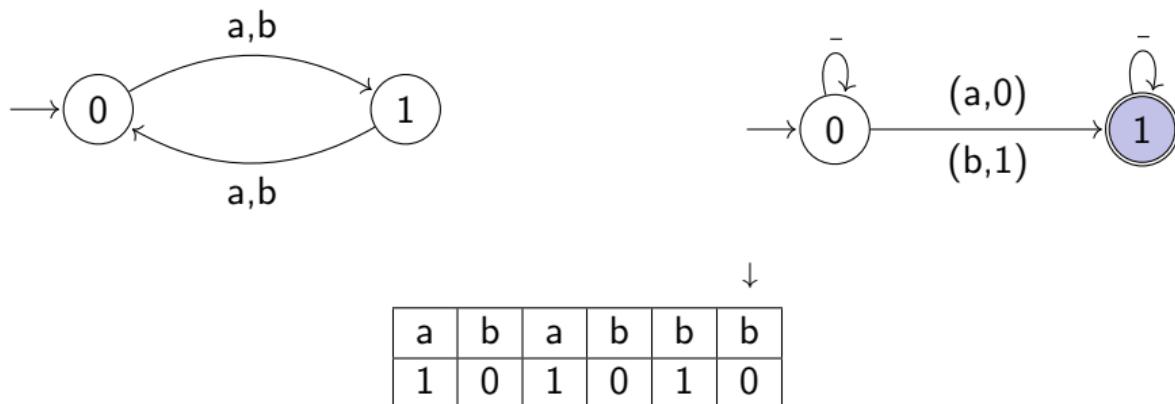
Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath product: Algebraic counterpart of the sequential composition, denoted *

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

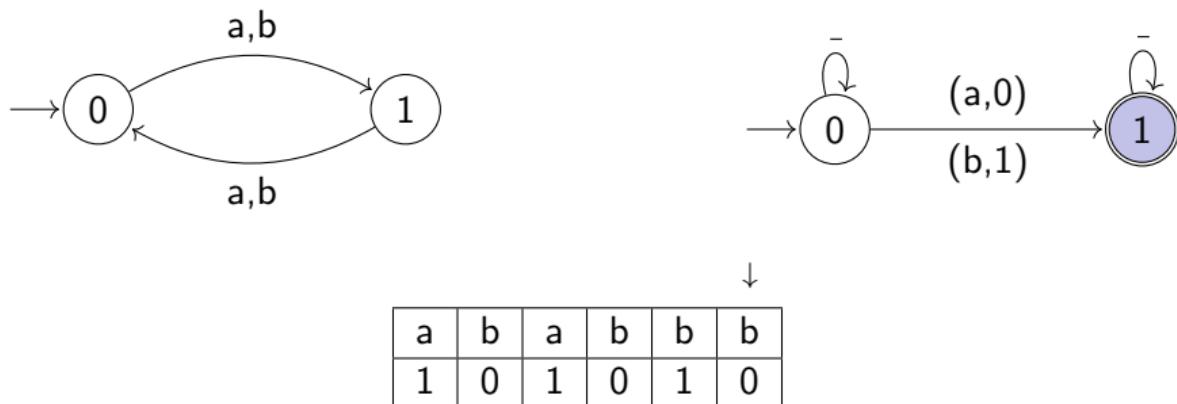


Wreath product: Algebraic counterpart of the sequential composition, denoted $*$

\mathbf{J}^+ is the class of languages whose syntactic ordered monoid satisfy $1 \leq x$, for all x

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .

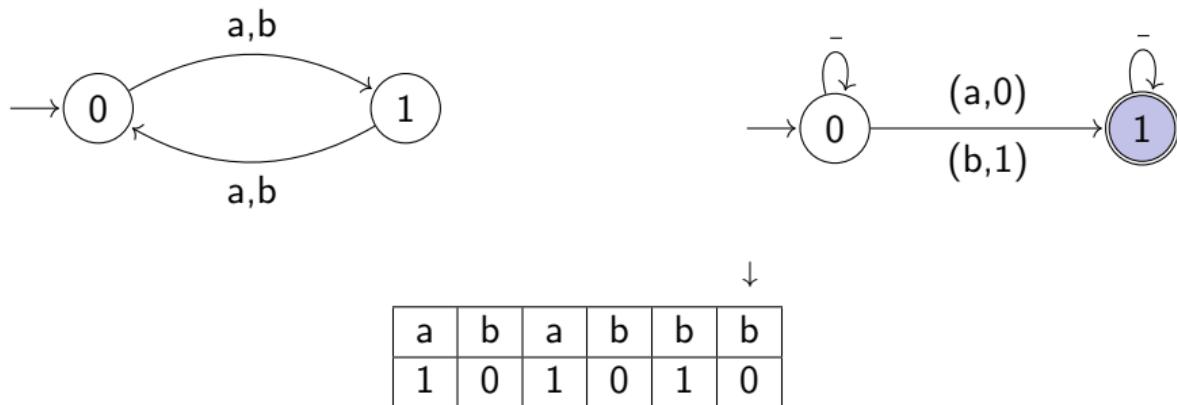


Wreath product: Algebraic counterpart of the sequential composition, denoted $*$

\mathbf{J}^+ is the class of languages whose syntactic ordered monoid satisfy $1 \leq x$, for all x
→ Captures Σ_1

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



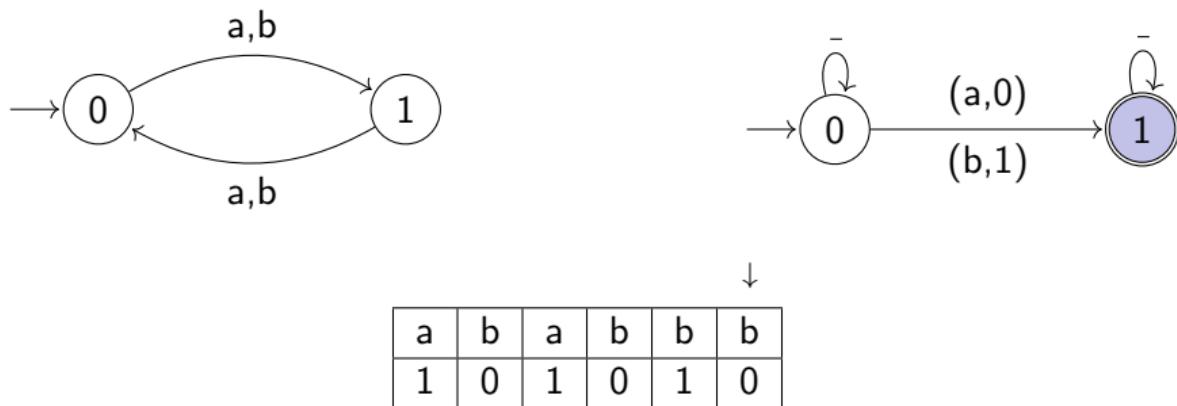
Wreath product: Algebraic counterpart of the sequential composition, denoted $*$

\mathbf{J}^+ is the class of languages whose syntactic ordered monoid satisfy $1 \leq x$, for all x
→ Captures Σ_1

We will look at $\mathbf{J}^+ * \mathbf{G}$

Wreath products

Sequential composition of automata \mathcal{A}_1 and \mathcal{A}_2 : on input w , label w by the states it reaches in \mathcal{A}_1 and feed it to \mathcal{A}_2 .



Wreath product: Algebraic counterpart of the sequential composition, denoted $*$

\mathbf{J}^+ is the class of languages whose syntactic ordered monoid satisfy $1 \leq x$, for all x
→ Captures Σ_1

We will look at $\mathbf{J}^+ * \mathbf{G}$

→ The complement of $(ab)^*$ is inside.

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with `Prop` the evaluation in a group of all prefixes

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with `Prop` the evaluation in a group of all prefixes
→ we can maintain the word labeled by a group

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with `Prop` the evaluation in a group of all prefixes

- we can maintain the word labeled by a group
- a Σ_1^+ formula can take care of the \mathbf{J}^+ part

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with [Prop](#) the evaluation in a group of all [prefixes](#)

→ we can maintain the word labeled by a group

→ a Σ_1^+ formula can take care of the \mathbf{J}^+ part

Lower bound: lot of work on [wreath product by \$\mathbf{G}\$](#)

[Almeida, Escada 2002] [Pin, Weil 2002]

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with [Prop](#) the evaluation in a group of all [prefixes](#)

- we can maintain the word labeled by a group
- a Σ_1^+ formula can take care of the \mathbf{J}^+ part

Lower bound: lot of work on [wreath product by \$\mathbf{G}\$](#)

[Almeida, Escada 2002] [Pin, Weil 2002]

- (M, \leq) is in $\mathbf{J}^+ * \mathbf{G} \Leftrightarrow$ for all x such that $x^2 = x$, we have $x \geq 1$

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with [Prop](#) the evaluation in a group of all [prefixes](#)

- we can maintain the word labeled by a group
- a Σ_1^+ formula can take care of the \mathbf{J}^+ part

Lower bound: lot of work on [wreath product by \$\mathbf{G}\$](#)

[Almeida, Escada 2002] [Pin, Weil 2002]

- (M, \leq) is in $\mathbf{J}^+ * \mathbf{G} \Leftrightarrow$ for all x such that $x^2 = x$, we have $x \geq 1$
- Take $(M, \leq) \notin \mathbf{J}^+ * \mathbf{G}$ and x such that $x \not\geq 1$

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with [Prop](#) the evaluation in a group of all [prefixes](#)

- we can maintain the word labeled by a group
- a Σ_1^+ formula can take care of the \mathbf{J}^+ part

Lower bound: lot of work on [wreath product by \$\mathbf{G}\$](#)

[Almeida, Escada 2002] [Pin, Weil 2002]

- (M, \leq) is in $\mathbf{J}^+ * \mathbf{G} \Leftrightarrow$ for all x such that $x^2 = x$, we have $x \geq 1$
- Take $(M, \leq) \notin \mathbf{J}^+ * \mathbf{G}$ and x such that $x \not\geq 1$
- Consider $\mu : \{a, b\}^* \rightarrow (M, \leq)$ such that $\mu(b) = 1$ and $\mu(a) = x$

The power of UDyn Σ_1^+

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with [Prop](#) the evaluation in a group of all [prefixes](#)

- we can maintain the word labeled by a group
- a Σ_1^+ formula can take care of the \mathbf{J}^+ part

Lower bound: lot of work on [wreath product by \$\mathbf{G}\$](#)

[Almeida, Escada 2002] [Pin, Weil 2002]

- (M, \leq) is in $\mathbf{J}^+ * \mathbf{G} \Leftrightarrow$ for all x such that $x^2 = x$, we have $x \geq 1$
- Take $(M, \leq) \notin \mathbf{J}^+ * \mathbf{G}$ and x such that $x \not\geq 1$
- Consider $\mu : \{a, b\}^* \rightarrow (M, \leq)$ such that $\mu(b) = 1$ and $\mu(a) = x$
- It recognizes b^* : x is not in the upset of 1

The power of $\text{UDyn}\Sigma_1^+$

Theorem

$$\text{UDyn}\Sigma_1^+ \cap \text{Reg} = \mathbf{J}^+ * \mathbf{G}$$

Upper bound: we can maintain with [Prop](#) the evaluation in a group of all [prefixes](#)

- we can maintain the word labeled by a group
- a Σ_1^+ formula can take care of the \mathbf{J}^+ part

Lower bound: lot of work on [wreath product by \$\mathbf{G}\$](#)

[Almeida, Escada 2002] [Pin, Weil 2002]

- (M, \leq) is in $\mathbf{J}^+ * \mathbf{G} \Leftrightarrow$ for all x such that $x^2 = x$, we have $x \geq 1$
- Take $(M, \leq) \notin \mathbf{J}^+ * \mathbf{G}$ and x such that $x \not\geq 1$
- Consider $\mu : \{a, b\}^* \rightarrow (M, \leq)$ such that $\mu(b) = 1$ and $\mu(a) = x$
- It recognizes b^* : x is not in the upset of 1
- This language can be shown to not be in $\text{UDyn}\Sigma_1^+$

Conclusion

The only problem left is to identify the regular languages of $UDyn\Sigma_1$.

Conclusion

The only problem left is to identify the regular languages of $\text{UDyn}\Sigma_1$.

→ Strictly more powerful than $\text{UDyn}\Sigma_1^+$: witnessed by b^* and $(a + b)^*aa(a + b)^*$.

Conclusion

The only problem left is to identify the regular languages of $\text{UDyn}\Sigma_1$.

- Strictly more powerful than $\text{UDyn}\Sigma_1^+$: witnessed by b^* and $(a + b)^*aa(a + b)^*$.
- Conjecture: $J * G \subsetneq \text{UDyn}\Sigma_1 \subseteq \Sigma_2 * G$

Conclusion

The only problem left is to identify the regular languages of $\text{UDyn}\Sigma_1$.

- Strictly more powerful than $\text{UDyn}\Sigma_1^+$: witnessed by b^* and $(a + b)^*aa(a + b)^*$.
- **Conjecture:** $\mathbf{J} * \mathbf{G} \subsetneq \text{UDyn}\Sigma_1 \subseteq \Sigma_2 * \mathbf{G}$
- We lack **lower bounds!**

Conclusion

The only problem left is to identify the regular languages of $\text{UDyn}\Sigma_1$.

- Strictly more powerful than $\text{UDyn}\Sigma_1^+$: witnessed by b^* and $(a+b)^*aa(a+b)^*$.
- **Conjecture:** $\mathbf{J} * \mathbf{G} \subsetneq \text{UDyn}\Sigma_1 \subseteq \Sigma_2 * \mathbf{G}$
- We lack **lower bounds!**

Recap:

Dynamic class	UDynProp	$\text{UDyn}\Sigma_1^+$	$\text{UDyn}\Sigma_2$
Regular languages	\mathbf{G}	$\mathbf{J}^+ * \mathbf{G}$	Reg