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— Given its minimal automaton, it corresponds to the set of transition functions with
composition.

— Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg C DynFO: Maintain the evaluation of infixes in a monoid.
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A division-based representation of the syntactic monoid of (aa)*b(a + b)*:

daa d

)
£
el _ aab R-classes: set of § %
sclasses: x with same xM g =
set of x with °
same MxM ab

R/_/ )
L-classes: set of x with same Mx

— If an infix evaluates in J, then the whole word evaluates > J.
— Every word has a decomposition of the form:

w1 Wy, Wiy +1 Wi, Wiy+1 W,
—_—
wy J T <g T1Wi+41

J

T2 <g T2Wiy41

Lm
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— Vil < j < lgy1, there is no jump in J-class at j (thanks to L)
— there is a jump in J-class at each /¢ (thanks to L)
— the overall evaluation is x (thanks to R, and more work!)

Thus we can answer membership in o
Updates of R at i: there is an index j such that w[i, ] evaluates to x and w[i, j + 1]

is > J.
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> inverse morphisms (1 1(L)).

UDynProp is a variety.

Theorem
Membership of a language in UDynFO only depends on its syntactic monoid.

Usefull to define a class of languages by their syntactic monoids
— G is the class of languages whose syntactic monoid is a group
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— M is a group < the identity is the only x such that x? = x
— Take M ¢ G and x # 1 such that x? = x

— Consider p : {a, b}* — M such that p(b) =1 and p(a) = x
— It recognizes (a + b)*a(a + b)*

— This language in not in UDynProp [Schwentick, Zeume 2015]
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Membership does not depend only on the syntactic monoid.

Definition
An ordered monoid is a monoid equiped with an order <.

— L is recognized by (M, <) if there is an upset P and a morphism p st L = u~1(P)
— There is a notion of syntactic ordered monoid

— Membership of a language in a positive variety only depends on its syntactic
ordered monoid
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Wreath products

Sequential composition of automata A; and Ay: on input w, label w by the states it

reaches in A; and feed it to A>.

a,b _ _
. (20) 6
@O RO Iy
a,b
1
albla|b|b]|b
1/0(1]0]1]|0

Wreath product: Algebraic counterpart of the sequential composition, denoted

JT is the class of languages whose syntactic ordered monoid satisfy 1 < x, for all x

— Captures 21

We will look at J* « G

— The complement of (ab)* is inside.

9/11
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— we can maintain the word labeled by a group
—a Zf formula can take care of the J* part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]
— (M, <) isin J* * G < for all x such that x?> = x, we have x > 1

— Take (M, <) ¢ J* % G and x such that x # 1

— Consider p : {a, b}* — (M, <) such that p(b) =1 and p(a) = x

— It recognizes b*: x is not in the upset of 1

— This language can be shown to not be in UDyn¥
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Conclusion

The only problem left is to identify the regular languages of UDyn% ;.

— Strictly more powerful than UDyn¥: witnessed by b* and (a + b)*aa(a + b)*.
— Conjecture: J* G C UDynX; C ¥ xG

— We lack lower bounds!

Recap:

Dynamic class | UDynProp | UDynX{ | UDyn¥,
Regular languages ‘ G ‘ JTxG ‘ Reg

11/11



