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Incremental maintenance and DynFO

a a b a b a ∈ (aa)∗b(a+ b)∗

→ Descriptive approach DynFO: use tables updated by first-order formulas
→ Table T : store whether of the parity of the number of as before every position is
even.
→ Update of j on change at i : (j ≥ i ⇔ ¬T (j))
→ Output: ∃j ,First-b(j) ∧ T (j)
→ This language is in DynFO but not in FO.

Fine-grained analysis:
→ Restricting alternations: DynProp, DynΣ1, DynΣ2, . . .
→ Restricting tables arity: UDynProp, UDynΣ1, UDynΣ2, . . .
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Regular languages

Already studied: DynProp = Reg [Gelade, Marquardt, Schwentick 2012]

The proof only uses binary tables for a DFA A:
→ for every pair of states p, q, Tp,q stores all couples j ≤ k such that w [j , k] ends in q
starting from p.
→ Output: disjunction of Ti ,f (min,max) for i initial and f final.
→ Update of (j , k) for change a at i :

→ if j ≤ i ≤ k: disjunction over r
a−→ r ′ of Tp,r ∧ Tr ′,q.

→ else: do nothing.

We restrict our attention to unary DynFO
Already known: Reg ⊆ UDynFO [Hesse 2003]

→ We refine this with algebra!
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The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.

→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.

→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.

→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.

→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The algebraic theory

finite automaton ≈ finite monoid (M, ·)

finite set associative operation

Take µ : {a, b} → M extended to Σ∗ by µ(a1 · · · an) = µ(a1) · · ·µ(an)
→ L recognized by µ: L = µ−1(P) for P ⊆ M

recognize same languages

(aa)∗b(a+ b)∗ is recognized by M = {a, aa, aab, ab}.
→ records if there is a b and the parity of the number of as before the first b.
→ The operation is defined accordingly. (ex: a · aab = ab and aab · a = aab)

Syntactic monoid of a language: smallest monoid recognizing it.
→ Given its minimal automaton, it corresponds to the set of transition functions with
composition.
→ Exhibit algebraic properties instead of combinatorial ones.

Previous proof of Reg ⊆ DynFO: Maintain the evaluation of infixes in a monoid.

3/11



The regular languages of UDynΣ2



Ideal structure

A division-based representation of the syntactic monoid of (aa)∗b(a+ b)∗:

aa a

aab

ab

J -classes:
set of x with
same MxM

R-classes: set of
x with same xM

L-classes: set of x with same Mx

d
ec
re
as
in
g

M
xM

→ If an infix evaluates in J, then the whole word evaluates ≥ J.
→ Every word has a decomposition of the form:

w1 wl1 wl1+1 wl2 wl2+1 wn

x1

x2

xm

x1wl1+1

x2wl2+1

w1 <J

<J

J
J

...

1

4/11



Ideal structure

A division-based representation of the syntactic monoid of (aa)∗b(a+ b)∗:

aa a

aab

ab

J -classes:
set of x with
same MxM

R-classes: set of
x with same xM

L-classes: set of x with same Mx

d
ec
re
as
in
g

M
xM

→ If an infix evaluates in J, then the whole word evaluates ≥ J.
→ Every word has a decomposition of the form:

w1 wl1 wl1+1 wl2 wl2+1 wn

x1

x2

xm

x1wl1+1

x2wl2+1

w1 <J

<J

J
J

...

1

4/11



Ideal structure

A division-based representation of the syntactic monoid of (aa)∗b(a+ b)∗:

aa a

aab

ab

J -classes:
set of x with
same MxM

R-classes: set of
x with same xM

L-classes: set of x with same Mx

d
ec
re
as
in
g

M
xM

→ If an infix evaluates in J, then the whole word evaluates ≥ J.
→ Every word has a decomposition of the form:

w1 wl1 wl1+1 wl2 wl2+1 wn

x1

x2

xm

x1wl1+1

x2wl2+1

w1 <J

<J

J
J

...

1

4/11



Ideal structure

A division-based representation of the syntactic monoid of (aa)∗b(a+ b)∗:

aa a

aab

ab

J -classes:
set of x with
same MxM

R-classes: set of
x with same xM

L-classes: set of x with same Mx

d
ec
re
as
in
g

M
xM

→ If an infix evaluates in J, then the whole word evaluates ≥ J.
→ Every word has a decomposition of the form:

w1 wl1 wl1+1 wl2 wl2+1 wn

x1

x2

xm

x1wl1+1

x2wl2+1

w1 <J

<J

J
J

...

1

4/11



Ideal structure

A division-based representation of the syntactic monoid of (aa)∗b(a+ b)∗:

aa a

aab

ab

J -classes:
set of x with
same MxM

R-classes: set of
x with same xM

L-classes: set of x with same Mx

d
ec
re
as
in
g

M
xM

→ If an infix evaluates in J, then the whole word evaluates ≥ J.
→ Every word has a decomposition of the form:

w1 wl1 wl1+1 wl2 wl2+1 wn

x1

x2

xm

x1wl1+1

x2wl2+1

w1 <J

<J

J
J

...
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The power of UDynΣ2

Theorem
All regular languages are in UDynΣ2.

Proof sketch: We show that we can compute the evaluation in any monoid M.

A table RJ,x for all J -class J and x ∈ M.
→ contains i iff the greatest infix in J starting at i evaluates to x .
→ Similarly: tables LJ,x

We can check if w [i , j ] evaluates to x in Σ2:
∃i = l1 < · · · < lm = j ,

→ ∀lk ≤ j < lk+1, there is no jump in J -class at j (thanks to L)
→ there is a jump in J -class at each lk (thanks to L)
→ the overall evaluation is x (thanks to R, and more work!)

Thus we can answer membership in Σ2

Updates of RJ,x at i : there is an index j such that w [i , j ] evaluates to x and w [i , j + 1]
is > J.
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The regular languages of UDynProp



Varieties

We used: maintain monoids ⇒ maintain all recognized languages

→ We want the converse.

Definition (Variety)

A set of languages is a variety if it is closed under:

▶ Boolean operations (∪, ∩ and Lc),

▶ quotients (a−1L and La−1),

▶ inverse morphisms (µ−1(L)).

UDynProp is a variety.

Theorem
Membership of a language in UDynFO only depends on its syntactic monoid.

Usefull to define a class of languages by their syntactic monoids
→ G is the class of languages whose syntactic monoid is a group
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The power of UDynProp

Theorem
UDynProp ∩ Reg = G

Upper bound: In a group, the evaluation of w [i , j ] only depends on w [1, i ] and w [1, j ].
→ Only maintain evaluation prefixes is enough to retrieve all infixes
→ the naive algorithm can be improved with unary tables.

Lower bound: How are the monoids that are not groups?
→ M is a group ⇔ the identity is the only x such that x2 = x
→ Take M /∈ G and x ̸= 1 such that x2 = x
→ Consider µ : {a, b}∗ → M such that µ(b) = 1 and µ(a) = x
→ It recognizes (a+ b)∗a(a+ b)∗

→ This language in not in UDynProp [Schwentick, Zeume 2015]
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The regular languages of UDynΣ+
1



Positive varieties

Σ+
1 : formulas of the form ∃x1, · · · , xk , φ where φ has no negations.

→ All formulas used so far had no negations.

UDynΣ+
1 (and UDynΣ1) are not closed under complement.

Definition
A set of languages is a positive variety if it is closed under: Union, intersection,
quotients and inverse morphisms.

→ UDynΣ+
1 is a positive variety

Membership does not depend only on the syntactic monoid.

Definition
An ordered monoid is a monoid equiped with an order ≤.

→ L is recognized by (M,≤) if there is an upset P and a morphism µ st L = µ−1(P)
→ There is a notion of syntactic ordered monoid
→ Membership of a language in a positive variety only depends on its syntactic
ordered monoid
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Wreath products

Sequential composition of automata A1 and A2: on input w , label w by the states it
reaches in A1 and feed it to A2.

Wreath product: Algebraic counterpart of the sequential composition, denoted ∗
J+ is the class of languages whose syntactic ordered monoid satisfy 1 ≤ x , for all x
→ Captures Σ1

We will look at J+ ∗ G
→ The complement of (ab)∗ is inside.
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The power of UDynΣ+
1

Theorem

UDynΣ+
1 ∩ Reg = J+ ∗ G

Upper bound: we can maintain with Prop the evaluation in a group of all prefixes
→ we can maintain the word labeled by a group
→ a Σ+

1 formula can take care of the J+ part

Lower bound: lot of work on wreath product by G [Almeida, Escada 2002] [Pin, Weil 2002]

→ (M,≤) is in J+ ∗ G ⇔ for all x such that x2 = x , we have x ≥ 1
→ Take (M,≤) /∈ J+ ∗ G and x such that x ̸≥ 1
→ Consider µ : {a, b}∗ → (M,≤) such that µ(b) = 1 and µ(a) = x
→ It recognizes b∗: x is not in the upset of 1
→ This language can be shown to not be in UDynΣ+
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Conclusion

The only problem left is to identify the regular languages of UDynΣ1.

→ Strictly more powerful than UDynΣ+
1 : witnessed by b∗ and (a+ b)∗aa(a+ b)∗.

→ Conjecture: J ∗ G ⊊ UDynΣ1 ⊆ Σ2 ∗ G
→ We lack lower bounds!

Recap:

Dynamic class UDynProp UDynΣ+
1 UDynΣ2

Regular languages G J+ ∗ G Reg
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