A Robust Class of Linear Recurrence Sequences

C. Barloy¹ N. Fijalkow² N. Lhote³ F. Mazowiecki⁴

¹École Normale Supérieure de Paris, France

²CNRS, LaBRI, Bordeaux, France, and the Alan Turing Institute of data science, London,United Kingdom

³University of Warsaw, Poland

⁴LaBRI, Université de Bordeaux, France

CSL 2020

Several characterisations of LRS

(2) The subclass of poly-rational sequences

- Poly-rational expressions
- Polynomially ambiguous weighted automata
- PolyRat ⊂ PolyWA
- PolyWA \subset PolyRat
- Eigenvalues of PolyRat sequences
- Copyless cost-register automata
- Conclusion

Several characterisations of LRS

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 3 / 36

Several characterisations of LRS

Theorem: The following classes 1 to 5 are equal.

- **1** Basic definition: $u_{n+k} = a_1 u_{n+k-1} + \cdots + a_k u_n$
- 2 Weighted automata
- Sinear cost register automata
- Rational expressions
- Sational power series

Running examples

1 Fibonacci: $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$.

イロト イボト イヨト イヨト

Running examples

1 Fibonacci:
$$F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

2 Identity:
$$u_{n+2} = 2u_{n+1} - u_n$$
 that is to say $u_n = n$.

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

≣ ▶ ◀ ≣ ▶ ≣ ∽ ۹. December 18th 5 / 36

< □ > < □ > < □ > < □ > < □ >

(Unary) Weighted automata

Definition: A weighted automaton is a tuple $\mathcal{A} = (Q, M, I, F)$ where:

- -Q is the finite set of states.
- *M* is the transition matrix in $\mathbb{Q}^{Q \times Q}$.
- I is the initial row vector in $\mathbb{Q}^{1 \times Q}$.
- F is the final column vector $\mathbb{Q}^{Q \times 1}$.

< □ > < 同 > < 三 > < 三 >

(Unary) Weighted automata

Definition: A weighted automaton is a tuple $\mathcal{A} = (Q, M, I, F)$ where:

- -Q is the finite set of states.
- *M* is the transition matrix in $\mathbb{Q}^{Q \times Q}$.
- I is the initial row vector in $\mathbb{Q}^{1 \times Q}$.
- F is the final column vector $\mathbb{Q}^{Q \times 1}$.

It recognizes the sequence $u_n = IM^n F$.

Fibonacci automaton

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 7 / 36

э

(日) (四) (日) (日) (日)

Identity automaton

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 8 / 36

3

A D N A B N A B N A B N

Linear cost-register automata

Definition: A cost-register automaton is a deterministic automaton with write-only registers. The key ingredients are:

- An initialisation of registers.
- A (linear) update of registers at each transition.
- Final expressions.

Fibonacci CRA

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 10 / 36

3

< □ > < □ > < □ > < □ > < □ >

Identity CRA

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 11 / 36

3

<ロト <問ト < 目と < 目と

Rational expressions

Given C a class of LRS and operators op_1, \ldots, op_k , the smallest class of LRS containing C and closed under those operators will be denoted by:

 $\mathsf{Rat}[\mathcal{C},\mathsf{op}_1,\ldots,\mathsf{op}_k]$.

Rational expressions

Given C a class of LRS and operators op_1, \ldots, op_k , the smallest class of LRS containing C and closed under those operators will be denoted by:

 $\mathsf{Rat}[\mathcal{C},\mathsf{op}_1,\ldots,\mathsf{op}_k]$.

Kleene-Schützenberger

 $\mathsf{LRS} = \mathsf{Rat}[\mathsf{Fin},+,\cdot,*]$

Corentin Barloy (Ecole Normale Supérieure)

Rational power series

We can associate to a LRS (u_n) the formal power serie $\sum_{\mathbb{N}} u_n X^n$.

Folklore

The sequences that are LRS are exactly those that can be written as a rational power serie, i.e., one of the form $\frac{P}{Q}$ with P and Q two polynomials.

The subclass of poly-rational sequences

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 14 / 36

The subclass of poly-rational sequences

Theorem: The following classes 1 to 5 are equal.

- Polynomially ambiguous weighted automata
- Opyless cost register automata
- Oly-rational expressions
- LRS with roots of rationals as eigenvalues
- Sational power series with roots of rationals as poles

Poly-rational expressions

- Arith is the set of sequences of the form $u_{n+1} = u_n + \lambda$.
- Geo is the set of sequences of the form $u_{n+1} = \lambda u_n$.
- shift is the operator that adds a value a in front of a sequence u.
- shuffle is the operator that interleaves sequences:

$$\mathsf{shuffle}(u^1,\ldots,u^k) = (u^1_0,\ldots,u^k_0,u^1_1,\ldots,u^k_1,\ldots)$$
 .

Poly-rational sequences

$\mathsf{PolyRat} = \mathsf{Rat}[\mathsf{Arith} \cup \mathsf{Geo}, +, \times, \mathsf{shift}, \mathsf{shuffle}] \ .$

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 17 / 36

э

< □ > < 同 > < 回 > < Ξ > < Ξ

Ambiguity

The ambiguity function of \mathcal{A} is the function that associates to $n \in \mathbb{N}$ the number of accepting runs for a^n .

Examples

Exponentially ambiguous:

Polynomially ambiguous:

$\mathsf{PolyRat} \subseteq \mathsf{PolyWA}$

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 20 / 36

3

A D N A B N A B N A B N

Arith and Geo

2

イロト イヨト イヨト イヨト

- component-wise sum: disjoint union of automata.

- component-wise sum: disjoint union of automata.
- component-wise product: product of automata.

- component-wise sum: disjoint union of automata.
- component-wise product: product of automata.
- shift:

$$\xrightarrow{1} (q_0) \longrightarrow (\mathcal{A})$$

- component-wise sum: disjoint union of automata.
- component-wise product: product of automata.
- shift:

- shuffle: We add k - 1 intermediate for each transition:

$\mathsf{PolyWA} \subseteq \mathsf{PolyRat}$

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 23 / 36

3

A D N A B N A B N A B N

Chained loop

A chained loop is a simple path with disjoint loops along it (with only one initial and final state).

Decomposition

Theorem: Any polynomially ambiguous weighted automaton is equivalent to a union of chained loops.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 26 / 36

3

< □ > < □ > < □ > < □ > < □ >

Example

3

A D N A B N A B N A B N

Proof sketch

- The formal serie associated to any weighted automaton is of the form $\frac{P}{Q}$ where P and Q are polynomials and the roots of Q are roots of rationals.

$$Q(x) = 0 \Leftrightarrow \exists n, q, x = \sqrt[n]{q}$$
.

Proof sketch

- The formal serie associated to any weighted automaton is of the form $\frac{P}{Q}$ where P and Q are polynomials and the roots of Q are roots of rationals.

$$Q(x) = 0 \Leftrightarrow \exists n, q, x = \sqrt[n]{q}$$
.

- Such formal series define sequences in PolyRat.

Poles of PolyRat sequences

Folklore

If a LRS has a characteristic polynomial Q, then the induced serie is $\frac{P}{Q}$ for some polynomial P.

Poles of PolyRat sequences

Folklore

If a LRS has a characteristic polynomial Q, then the induced serie is $\frac{P}{Q}$ for some polynomial P.

PolyRat sequences are exactly the LRS whose eigenvalues are roots of rationals.

Copyless cost-register automata

A cost-register automaton is copyless if every update uses each register at most once.

$$\begin{cases} x := x + 5y \\ y := 2z \\ z := 1 \end{cases} \qquad \begin{cases} x := x \\ y := x + y \end{cases} \qquad \begin{cases} x := x + y \\ y := 1 \end{cases}$$

A D F A B F A B F A B

Examples

Non copyless CRA:

Copyless CRA:

э

< 回 > < 三 > < 三 >

PolyRat = CCRA

3

A D N A B N A B N A B N

Strictness of the ambiguity hierarchy

3

A D N A B N A B N A B N

Complexity

- The Skolem problem is decidable for our class [Rebiha14].
- The Skolem problem is NP-hard for our class [Akshay17].
- It is open if it is in NP.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Thanks!

Corentin Barloy (Ecole Normale Supérieure)

A Robust Class of LRS

December 18th 35 / 36

2

イロト イヨト イヨト イヨト

Sources

- Rachid Rebiha, Arnaldo Vieira Moura, and Nadir Matringe. On the termination of linear and affine programs over the integers.CoRR, abs/1409.4230, 2014.
- S. Akshay, Nikhil Balaji, and Nikhil Vyas. Complexity of restricted variants of skolem and related problems. In 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 78:1–78:14,2017.

< □ > < □ > < □ > < □ > < □ > < □ >