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Motivations

P

⊆ P/poly

vs NP

algorithms in P
with polynomial advice

circuits with
polynomially many gates

P-uniform circuits with
polynomially many gates

LOGSPACE-uniform circuits with
polynomially many gates

Shannon: Almost every function requires exponential size.

(Close to hardware)
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Classes of small circuits

AC0

ACC0[P]

ACC0

TC0

NC1

polynomial size
constant depth

unbounded fan-in

polynomial size
logarithmic depth

fan-in 2
AC0 + MOD gates

AC0 + prime MOD gates
AC0 + MAJ gates

MOD : number of 1 ≡m 0 ? MAJ : number of 1 ≥ number of 0 ?

MOD =
∨

i≡0 EQi

Efficient circuit
for iterated additionWilliams : NEXP ( ACC0

strict
Parity: (10∗1)∗

(Furst, Saxe, Sipser)

strict
Mod6: ((0∗10∗)6)∗

(Razborov, Smolenski)

strict???
If so, there is a regular witness

(Barrington)
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It is all about regular languages!
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The case of NC1

Theorem
All regular languages are in NC1.

A an automaton: finitely many functions Q → Q

Bounded size circuits for:

I Given a letter a, its transition function

I The composition of two functions

I Whether a function maps the initial state to a final state

Divide and conquer.
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Expressing languages with logic

{a, b, c}∗ab∗ can be defined with:

∃x ,∀y ,︸ ︷︷ ︸
one quantifier

alternation

a(x) ∧ (y > x ⇒ b(y))
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Expressiveness

Fragments

I First-order logic: FO

I Bounded quantifier
alternation: Σk , Πk

I Many more (restricting the
number of variables, adding
modular quantifiers,...)

Numerical predicates

I The order: x < y

I The successor predicate: x + 1 = y

I The modular predicates: x mod 3 = 0

Regular predicates: REG

I Many more (xy = z , encoding of a
cat, ...)

Arbitrary predicates: ARB

∃x , ∀y , a(x) ∧ (y > x ⇒ b(y))
∈ Σ2[REG]

∀x , (x)⇒ a(x)
∈ Π1[ARB]
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cat, ...)

Arbitrary predicates: ARB

∃x , ∀y , a(x) ∧ (y > x ⇒ b(y))
∈ Σ2[REG]

∀x , (x)⇒ a(x)
∈ Π1[ARB]
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ACC0[P]
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FO[ARB]FO[ARB]

FO+MOD[ARB]
(prime)

FO+MOD[ARB]

∃mod
q,r = # satisfiyng assignements is ≡ r mod q

FO+MAJ[ARB]

∃maj = a majority of the assignements are satisfying

8/13



Circuits and formulas

AC0

ACC0[P]

ACC0

TC0

NC1

FO[ARB]

FO[ARB]

FO+MOD[ARB]
(prime)

FO+MOD[ARB]

∃mod
q,r = # satisfiyng assignements is ≡ r mod q

FO+MAJ[ARB]

∃maj = a majority of the assignements are satisfying

8/13



Circuits and formulas

AC0

ACC0[P]

ACC0

TC0

NC1

FO[ARB]FO[ARB]

FO+MOD[ARB]
(prime)

FO+MOD[ARB]

∃mod
q,r = # satisfiyng assignements is ≡ r mod q

FO+MAJ[ARB]

∃maj = a majority of the assignements are satisfying

8/13



Circuits and formulas

AC0

ACC0[P]

ACC0

TC0

NC1

FO[ARB]FO[ARB]

FO+MOD[ARB]
(prime)

FO+MOD[ARB]

∃mod
q,r = # satisfiyng assignements is ≡ r mod q

FO+MAJ[ARB]

∃maj = a majority of the assignements are satisfying

8/13



Central question

For L a fragment,

What are the regular languages of L[ARB] ?

A natural guess (Straubing):

L[ARB] ∩ Reg = L[REG] !

True

I Σ1

I FO

I FO with prime
modular quantifiers

AC0

ACC0[P]

False

I FO + S5

Open

I FO with composite
modular quantifiers

I FO with two variables

I Σk , k ≥ 3

Circuits with
composite modular gates

(AND ∈ CC0
6 ?)

Linear AC0

(complexity of addition)

Our result: Σ2[ARB] ∩ Reg = Σ2[REG]
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The circuit class Σ2

w = w1w2 · · ·wn−1wn

w1 w2 ¬w2 · · · wn−1¬wn−1 wn

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧

∨

· · · · · · · · ·

· · · · · ·

polynomial size
and

depth 3

bounded fan-in

It is equivalent to Σ2[ARB].
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The case of Σ2 (B,Cadilhac, Paperman, Zeume)

Σ2[ARB] ∩ Reg = Σ2[REG]

I ⊇: Immediate.

I ⊆: Take a regular language not in Σ2[REG], show that it is not in Σ2[ARB].

Algebra Circuit lower bound
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Proof sketch Algebra Lower bound

Theorem (Pin, Weil)

L in Σ2[REG] iff:

∀uxv ∈ L such that x can be iterated , then uxyxv is also in L for every y with the
same letters as x .

u xyx v ∈ L
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A limit for A is a word u:

I not in L
I that can fool every ∨ of bounded fan-in that accepts (at least) A.
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If every subset of L big enough admits a limit, then L cannot be recognized by a Σ2

circuit.

Proof: One of the ∧ gates must recognize a big subset of L.

A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

We give here a new method of finding limits, specially tailored for Σ2.

of the form uxyxv
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Conclusion

Also in the paper:

I Straubing’s conjecture for ∆2.

Not in the paper:

I The proof in its full generality.

Future work:

I Go higher in the hierarchy: BΣ2, Σ3, . . .

I Tackle different kind of fragments, like FO2.

13/13


