The Regular Languages in Circuit Classes

Corentin Barloy

Université de Lille

Joint work with Michaël Cadilhac, Charles Paperman and Thomas Zeume

Bordeaux 2022

$$L_4 = \{1110, \ldots\}$$

$$L_4 = \{1110, \ldots\} \qquad \qquad L = \bigcup_{i \in \mathbb{N}} L_i$$

size = number of gates

$$L_4 = \{1110, \ldots\} \qquad \qquad L = \bigcup_{i \in \mathbb{N}} L_i$$

$$L_4 = \{1110, \ldots\} \qquad \qquad L = \bigcup_{i \in \mathbb{N}} L_i$$

$$L_4 = \{1110, \ldots\} \qquad \qquad L = \bigcup_{i \in \mathbb{N}} L_i$$

$P \subseteq P/poly$ vs NP

$P \subseteq P/poly \quad vs \qquad NP$

Shannon: Almost every function requires exponential size.

Shannon: Almost every function requires exponential size.

The case of NC^1

Theorem All regular languages are in NC¹.

The case of NC¹

Theorem All regular languages are in NC¹.

 ${\mathcal A}$ an automaton: finitely many functions $Q \to Q$
The case of NC¹

Theorem *All regular languages are in* NC¹.

 ${\mathcal A}$ an automaton: finitely many functions $Q \to Q$

Bounded size circuits for:

- Given a letter *a*, its transition function
- The composition of two functions
- Whether a function maps the initial state to a final state

The case of NC¹

Theorem *All regular languages are in* NC¹.

 ${\mathcal A}$ an automaton: finitely many functions $Q \to Q$

Bounded size circuits for:

- Given a letter *a*, its transition function
- The composition of two functions
- Whether a function maps the initial state to a final state

Divide and conquer.

Expressing languages with logic

 $\{a, b, c\}^* ab^*$ can be defined with:

$$\exists x, \forall y, a(x) \land (y > x \Rightarrow b(y))$$

Expressing languages with logic

 $\{a, b, c\}^*ab^*$ can be defined with:

 $\underbrace{\exists x, \forall y,}_{} a(x) \land (y > x \Rightarrow b(y))$

one quantifier alternation

Fragments

Fragments

► First-order logic: FO

Fragments

- ► First-order logic: FO
- Bounded quantifier alternation: Σ_k , Π_k

Fragments

- ► First-order logic: FO
- Bounded quantifier alternation: Σ_k , Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Fragments

- ► First-order logic: FO
- Bounded quantifier alternation: Σ_k , Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

- The order: x < y
- The successor predicate: x + 1 = y

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

- The order: x < y
- The successor predicate: x + 1 = y
- The modular predicates: $x \mod 3 = 0$

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: x < y
- The successor predicate: x + 1 = y
- The modular predicates: x mod 3 = 0

Regular predicates: REG

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: x < y
- The successor predicate: x + 1 = y
- The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Many more (xy = z, encoding of a cat, ...)

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

The order: x < y
The successor predicate: x + 1 = y
The modular predicates: x mod 3 = 0
Regular predicates: REG
Many more (xy = z, encoding of a cat, ...)

Arbitrary predicates: ARB

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

The order: x < y
The successor predicate: x + 1 = y
The modular predicates: x mod 3 = 0
Regular predicates: REG
Many more (xy = z, encoding of a

cat, ...)

Arbitrary predicates: ARB

$$\exists x, \forall y, a(x) \land (y > x \Rightarrow b(y)) \\ \in \frac{\sum_{i \in \mathbb{Z}} [\mathsf{REG}]}{\sum_{i \in \mathbb{Z}} [\mathsf{REG}]}$$

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_k, Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

The order: x < y

►

The successor predicate: x + 1 = y

The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Arbitrary predicates: ARB

$$\exists x, \forall y, a(x) \land (y > x \Rightarrow b(y)) \\ \in \sum_{2} [\mathsf{REG}]$$

$$\forall x, \underbrace{\aleph}_{\in \Pi_1} (x) \Rightarrow a(x)$$
$$\in \Pi_1 [\mathsf{ARB}]$$

 $\exists_{q,r}^{mod} = \#$ satisfiyng assignements is $\equiv r \mod q$

 $\exists_{q,r}^{mod} = \#$ satisfying assignements is $\equiv r \mod q$

 $\exists^{maj} = a$ majority of the assignements are satisfying

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

For $\boldsymbol{\mathcal{L}}$ a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

```
\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] \ !
```

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

```
\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] \ !
```


For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

```
\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] \ !
```


For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

```
\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !
```


For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

```
\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] \ !
```


For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing): Circuits with $\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$ composite modular gates $(AND \in CC_6^0 ?)$ False Open True FO with composite , Σ₁ \blacktriangleright FO + S_5 \blacktriangleright FO \leftrightarrow AC⁰ modular quantifiers FO with two variables FO with prime $\blacktriangleright \Sigma_k, k \geq 3$ modular quantifiers $ACC^{0}[\mathcal{P}]$

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing): Circuits with $\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$ composite modular gates $(AND \in CC_6^0 ?)$ False Open True \blacktriangleright FO + S_5 **FO** with composite Σ₁ $\blacktriangleright FO \longleftrightarrow AC^0$ modular quantifiers FO with two variables FO with prime $\blacktriangleright \Sigma_k, k \geq 3$ modular quantifiers $ACC^{0}[\mathcal{P}]$ Linear AC⁰ (complexity of addition)

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing): Circuits with $\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$ composite modular gates $(AND \in CC_6^0 ?)$ False Open True ► FO with composite \blacktriangleright FO + S_5 Σ1 $\blacktriangleright FO \longleftrightarrow AC^0$ modular quantifiers FO with two variables FO with prime $\triangleright \Sigma_k, k > 3$ modular quantifiers $ACC^{0}[\mathcal{P}]$ Our result: Σ_2 [ARB] \cap Reg = Σ_2 [REG] Linear AC⁰ (complexity of addition)

The circuit class Σ_2

 $w = w_1 w_2 \cdots w_{n-1} w_n$

The circuit class Σ_2

 $w = w_1 w_2 \cdots w_{n-1} w_n$

The circuit class Σ_2

 $w = w_1 w_2 \cdots w_{n-1} w_n$

It is equivalent to Σ_2 [ARB].

$\boldsymbol{\Sigma_2}[\mathsf{ARB}] \cap \mathsf{Reg} = \boldsymbol{\Sigma_2}[\mathsf{REG}]$

$\Sigma_2[\mathsf{ARB}] \cap \mathsf{Reg} = \Sigma_2[\mathsf{REG}]$

$\Sigma_2[\mathsf{ARB}] \cap \mathsf{Reg} = \Sigma_2[\mathsf{REG}]$

► ⊇: Immediate.

► ⊆: Take a regular language not in Σ_2 [REG], show that it is not in Σ_2 [ARB].

$\Sigma_2[\mathsf{ARB}] \cap \mathsf{Reg} = \Sigma_2[\mathsf{REG}]$

The case of Σ_2 (B,Cadilhac, Paperman, Zeume)

$\Sigma_2[\mathsf{ARB}] \cap \mathsf{Reg} = \Sigma_2[\mathsf{REG}]$

Algebra Lower bound

Theorem (Pin, Weil)

 $\mathcal L$ in $\Sigma_2[\mathsf{REG}]$ iff:

Theorem (Pin, Weil)

 $\mathcal L$ in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L}$

 $u \quad \mathbf{x} \quad \mathbf{v} \in \mathcal{L}$

Theorem (Pin, Weil)

 $\mathcal L$ in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L} \text{ such that } x \text{ can be iterated}$

 $u \quad xxxxx \quad v \in \mathcal{L}$

Theorem (Pin, Weil)

 $\mathcal L$ in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L} \text{ such that } x \text{ can be iterated}$

 $u \quad x \quad v \in \mathcal{L}$

Theorem (Pin, Weil)

 $\mathcal L$ in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L}$ such that x can be iterated , then uxyxv is also in \mathcal{L} for every y with the same letters as x.

 $u \quad xyx \quad v \in \mathcal{L}$

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} . A limit for A is a word u:

 \blacktriangleright not in \mathcal{L}

• that can fool every \lor of bounded fan-in that accepts (at least) A.

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} . A limit for A is a word u:

- \blacktriangleright not in \mathcal{L}
- that can fool every \lor of bounded fan-in that accepts (at least) A.

Proposition

If every subset of $\mathcal L$ big enough admits a limit, then $\mathcal L$ cannot be recognized by a Σ_2 circuit.

Proof: One of the \land gates must recognize a big subset of \mathcal{L} .

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} . A limit for A is a word u:

- \blacktriangleright not in \mathcal{L}
- that can fool every \lor of bounded fan-in that accepts (at least) A.

Proposition

If every subset of $\mathcal L$ big enough admits a limit, then $\mathcal L$ cannot be recognized by a Σ_2 circuit.

Proof: One of the \land gates must recognize a big subset of \mathcal{L} .

A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} . A limit for A is a word u:

- \blacktriangleright not in \mathcal{L}
- that can fool every \lor of bounded fan-in that accepts (at least) A.

Proposition

If every subset of $\mathcal L$ big enough admits a limit, then $\mathcal L$ cannot be recognized by a Σ_2 circuit.

Proof: One of the \land gates must recognize a big subset of \mathcal{L} .

A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

We give here a new method of finding limits, specially tailored for Σ_2 .

of the form uxyxv

Conclusion

Also in the paper:

Straubing's conjecture for Δ_2 .

Not in the paper:

► The proof in its full generality.

Future work:

- Go higher in the hierarchy: $\mathcal{B}\Sigma_2$, Σ_3 , ...
- ► Tackle different kind of fragments, like FO₂.