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Circuits

depth = maximal length of a path

size = number of gates

wi wo w3 Wy
A =
\% A

Uniformity = definable in P, LOGSPACE, ...

Ly = {1110,...} L=Uien Li
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The case of NC!

Theorem
All regular languages are in NC.

A an automaton: finitely many functions Q@ — @

Bounded size circuits for:
» Given a letter a, its transition function
» The composition of two functions

» Whether a function maps the initial state to a final state

Divide and conquer.
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Arbitrary predicates: ARB
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Circuits and formulas
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LIARB] NReg = LIREG] | composite modular gates
(AND € CC2 ?)

True False Open )
> >, » FO + Ss » FO with composite
> FO+— AC® modular quantifiers
» FO with prime » FO with two variables
/) modular quantifiers > Y, k>3

Our result: Y5[ARB] N Reg = ¥5[REG] Linear AC°

(complexity of addition)
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Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Algebra

Lower bound

Vuxv € L such that x can be iterated , then uxyxv is also in L for every y with the

same letters as x.

u xyx vecrL
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Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥
circuit.

Proof: One of the A gates must recognize a big subset of L.
A way of finding limits is via Erdds sunflower lemma (Hastad, Jukna, Pudldk).

We give here a new method of finding limits, specially tailored for ¥.

of the form uxyxv
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Conclusion

Also in the paper:

» Straubing's conjecture for A,.

Not in the paper:

» The proof in its full generality.
Future work:

» Go higher in the hierarchy: BY¥,, Y3, .
» Tackle different kind of fragments, like F02
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