The Regular Languages in Circuit Classes

Corentin Barloy

L Université
&' de Lille
Joint work with Michaél Cadilhac, Charles Paperman and Thomas Zeume

Bordeaux 2022

1/13

Circuits

wi wo w3 Wy
A =
\% VAN

2/13

Circuits

1 1 1 0
/
A -
v A

2/13

Circuits

1 1 1 0
/
0 1
v A

2/13

Circuits

1 1 1 0
/
0 1
1 1

2/13

Circuits

1 1 1 0
/
0 1
1 1

2/13

Circuits

wi wo w3 Wy
A =
\% VAN

Ly = {1110,...}

2/13

Circuits

wi wo w3 Wy
A =
\% VAN

Ly = {1110,...} L=Uien Li

2/13

Circuits

size = number of gates

wq Wo w3 Wy
A =
Y A
A
Ly ={1110,...} L=UenLi

2/13

Circuits

depth = maximal length of a path

size = number of gates

wq Wo w3 Wy
A =
Y A
A
Ly ={1110,...} L=UenLi

2/13

Circuits

depth = maximal length of a path

size = number of gates

wi wo w3 Wy
A =
\% A

Uniformity = definable in P, LOGSPACE, ...

Ly = {1110,...} L=Uien Li

2/13

Motivations

3/13

Motivations

P C P/poly VS NP

3/13

Motivations

algorithms in P

/ with polynomial advice

P C P/poly VS NP

3/13

Motivations

algorithms in P
with polynomial advice

P C P/poly VS NP

circuits with
polynomially many gates

3/13

Motivations

algorithms in P
with polynomial advice

P C P/poly VS

circuits with

polynomially many gates
P-uniform circuits with

polynomially many gates

NP

3/13

Motivations

algorithms in P
LOGSPACE-uniform circuits with with polynomial advice
polynomially many gates

/

P C P/poly VS

circuits with

polynomially many gates
P-uniform circuits with

polynomially many gates

NP

3/13

Motivations

algorithms in P
LOGSPACE-uniform circuits with with polynomial advice
polynomially many gates

/

P C P/poly VS NP

circuits with

polynomially many gates
P-uniform circuits with

polynomially many gates

Shannon: Almost every function requires exponential size.

3/13

Motivations

algorithms in P
LOGSPACE-uniform circuits with with polynomial advice
polynomially many gates

/

P C P/poly VS NP

circuits with

polynomially many gates
P-uniform circuits with

polynomially many gates (C|Ose to hardware)

Shannon: Almost every function requires exponential size.

3/13

Classes of small circuits

ACCO[P] TCO
AC? ACCY NC!

4/13

Classes of small circuits

ACCO[P]
”"””,,,v' *-\\\\\\\‘;
AC’ ACC?
polynomial size

constant depth
unbounded fan-in

TCY

NC!

4/13

Classes of small circuits

ACCO[P]
”"””,,,v' *-\\\\\\\‘;
AC’ ACC?
polynomial size

constant depth
unbounded fan-in

TCY
NC!

|

polynomial size
logarithmic depth
fan-in 2

4/13

Classes of small circuits

ACCO[P]
,—a—"”""' i\\“‘-\~.>
ACY ACC®

|

polynomial size
constant depth
unbounded fan-in

MOD/| : numberof1=,07

TCY
NC!

|

polynomial size
logarithmic depth
fan-in 2

4/13

Classes of small circuits

ACCO[P] TCO
AC’ ACC’ NC!
polynomial size polynomial size
constant depth logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

ACCO[P] TCO
AC’ ACC’ NC!
polynomial size / polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC?

|

polynomial size
constant depth
unbounded fan-in

MOD

AC® + prime MOD gates

-

ACCO[P] TCO
ACCP NC?

/ polynomial size

AC® + MOD gates logarithmic depth

fan-in 2

: numberof 1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates

/ AC® + MAJ gates

ACCO[P] TCO
AC’ ACC’ NC!
polynomial size / polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates
P & AC® + MAJ gates

/ MOD =V, EQi\

ACCO[P] TCO

AC’ ACC’ NC!
polynomial size / polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates
P & AC® + MAJ gates

/ \ Efficient circuit
MOD = \/,_, EQ; for iterated addition
ACCO[P] >/ TC \4
0 / \ 0 1
AC ACC NC
polynomial size / polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2
MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates
P & AC® + MAJ gates

/Williams: NEXP ¢ ACCP \

ACCO[P] TCO
AC’ ACC’ NC!
polynomial size / polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates

0

strict ACY + MAJ gates

Parity: (10*1)* \
(Furst, Saxe, Sipser)
. ACCO[P] T

AC’ AccO NC!
polynomial size / polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates

0
strict ACY + MAJ gates
Parity: (10*1)* \
(Furst, Saxe, Sipser)
ACO strict <>\ ACCO NCl
Mode: ((0*10%)°)*

I (Razborov, Smolenski) / I
polynomial size polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC® + prime MOD gates

0
strict ACY + MAJ gates
Parity: (10*1)* \
(Furst, Saxe, Sipser)
AP e
. it > . /<< k\‘ .
AC M0d6: ((0*10*)6)* ACC s.trict??? ‘ NC
I (Razborov, Smolenski) If so, there is a regular witness I
o (Barrington) o
polynomial size polynomial size
constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2
MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

Classes of small circuits

AC? + prime MOD gates 0
strict AC® + MAJ gates

Pty (1071) - It is all about regular languages!

(Furst, Sa pser)
ACCO [P]
ACO strict NC!
Mode: | ((0*10%)°)* . : i
I (Razborov, Smolenski) If so, there is ::_\\regular witness | I
o (Barrington) o

polynomial size polynomial size

constant depth AC® + MOD gates logarithmic depth
unbounded fan-in fan-in 2

MOD/| : numberof1=,07 : number of 1 > number of 0 ?

4/13

The case of NC!

Theorem
All regular languages are in NC.

5/13

The case of NC!

Theorem
All regular languages are in NC.

A an automaton: finitely many functions Q@ — @

5/13

The case of NC!

Theorem
All regular languages are in NC.

A an automaton: finitely many functions Q@ — @

Bounded size circuits for:
» Given a letter a, its transition function
» The composition of two functions

» Whether a function maps the initial state to a final state

5/13

The case of NC!

Theorem
All regular languages are in NC.

A an automaton: finitely many functions Q@ — @

Bounded size circuits for:
» Given a letter a, its transition function
» The composition of two functions

» Whether a function maps the initial state to a final state

Divide and conquer.

5/13

Expressing languages with logic

{a, b, c}*ab* can be defined with:

dx,Vy, a(x)A(y >x= b(y))

6/13

Expressing languages with logic

{a, b, c}*ab* can be defined with:

dx,Vy, a(x)A(y >x= b(y))
——’

one quantifier
alternation

6/13

Expressiveness

Fragments Numerical predicates

7/13

Expressiveness

Fragments Numerical predicates

» First-order logic: FO

7/13

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, Iy

Numerical predicates

7/13

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, Iy

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

Numerical predicates

7/13

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, Iy

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

Numerical predicates

» The order: x <y

7/13

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, Iy

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

Numerical predicates

» The order: x <y

» The successor predicate: x+ 1=y

7/13

Expressiveness

Fragments Numerical predicates
» First-order logic: FO » The order: x <y
» Bounded quantifier » The successor predicate: x+ 1=y
alternation: X, Iy » The modular predicates: x mod 3 =0

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

7/13

Expressiveness

Fragments Numerical predicates
» First-order logic: FO » |The order: x <y
» Bounded quantifier » |The successor predicate: x+1 =y
alternation: X, Iy » | The modular predicates: x mod 3 =0
» Many more (restricting the Regular predicates: REG

number of variables, adding
modular quantifiers,...)

7/13

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, Iy

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

Numerical predicates

» |The order: x <y

v

The successor predicate: x+ 1=y

» The modular predicates: x mod 3 =10

Regular predicates: REG

» Many more (xy = z, encoding of a
cat, ...)

7/13

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, Iy

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

v

>

Numerical predicates

The order: x <y
The successor predicate: x+ 1=y

The modular predicates: x mod 3 =10

Regular predicates: REG

Many more (xy = z, encoding of a
cat, ...)

Arbitrary predicates: ARB

7/13

Expressiveness

Fragments Numerical predicates
» First-order logic: FO »||The order: x <y
» Bounded quantifier »||The successor predicate: x+1 =y
alternation: X, Iy »|| The modular predicates: x mod 3 =0
» Many more (restricting the Regular predicates: REG

number of variables, adding

o »| Many more (xy = z, encoding of a
modular quantifiers,...)

cat, ...)

Arbitrary predicates: ARB

Ix, Vy,a(x) A (y > x = b(y))
€ ¥,[REG]

7/13

Expressiveness

Fragments Numerical predicates
» First-order logic: FO »||The order: x <y
» Bounded quantifier »||The successor predicate: x+1 =y
alternation: X, Iy »|| The modular predicates: x mod 3 =0
» Many more (restricting the Regular predicates: REG

number of variables, adding

o »| Many more (xy = z, encoding of a
modular quantifiers,...)

cat, ...)
Arbitrary predicates: ARB
Ix,Vy,a(x) A (y > x = b(y)) Vx, 2 (x) = a(x)
€ Z2[REG] c I'Il[ARB]

7/13

Circuits and formulas

ACCO[P] TCO
AC® ACCY NC!

8/13

Circuits and formulas

ACCO[P] TCO
AC® ACCY NC!
FO[ARB]

8/13

Circuits and formulas

ACCO[P] TCO

0 — 0 1
AC FO+MOD[ARB] ACC NC
(prime)
FO[ARB] FO+MOD[ARB]

Elm‘,’d = # satisfiyng assignements is = r mod q

8/13

Circuits and formulas

ACCO[P] TCO
/ \
AC’” FO+MOD[ARB] ACC’ FO+MAJ[ARB] NC!
(prime)
FO[ARB] FO+MODI[ARB]

Elm‘,’d = # satisfiyng assignements is = r mod q

3ma = a majority of the assignements are satisfying

8/13

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

9/13

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

L[ARB] N Reg = L[REG] !

9/13

Central question

For £ a fragment,
What are the regular languages of LIARB] ?

A natural guess (Straubing):
L[ARB] N Reg = L[REG] !

True
> Y,
» FO

» FO with prime
modular quantifiers

9/13

Central question

For £ a fragment,
What are the regular languages of LIARB] ?

A natural guess (Straubing):
L[ARB] N Reg = L[REG] !

True
> Y,
> FO«— ACP

» FO with prime
/ modular quantifiers
ACCO[P]

9/13

Central question

For £ a fragment,
What are the regular languages of LIARB] ?

A natural guess (Straubing):

L[ARB] N Reg = L[REG] !

True False

> T > FO + S5
> FO«— ACP

» FO with prime
/) modular quantifiers

ACCO[P]

9/13

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

L[ARB] N Reg = L[REG] !

True False Open
> >, » FO + Ss » FO with composite
> FO+— AC® modular quantifiers
» FO with prime » FO with two variables
/) modular quantifiers > Y, k>3

ACCO[P]

9/13

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

Circuits with

LIARB] NReg = LIREG] | composite modular gates

True False
> > » FO + S5
> FO«— ACP

» FO with prime
/) modular quantifiers

ACCO[P]

(AND € CC2 ?)

Open
» FO with composite

modular quantifiers
» FO with two variables
> Y, k>3

9/13

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

Circuits with

LIARB] NReg = LIREG] | composite modular gates

True False
> > » FO + S5
> FO«— ACP

» FO with prime
/) modular quantifiers

ACCO[P]

(AND € CC2 ?)

Open
» FO with composite

modular quantifiers
» FO with two variables
> Y, k>3

Linear AC®
(complexity of addition)

9/13

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):
Circuits with

LIARB] NReg = LIREG] | composite modular gates
(AND € CC2 ?)

True False Open)
> >, » FO + Ss » FO with composite
> FO+— AC® modular quantifiers
» FO with prime » FO with two variables
/) modular quantifiers > Y, k>3

Our result: Y5[ARB] N Reg = ¥5[REG] Linear AC°

(complexity of addition)

9/13

The circuit class >,

W = WiWwp - - - Wph_1Wp

Wnp—1 7Wp—1

V/W
N\ WV
N

\

polynomial size
and
depth 3

10/13

The circuit class >,

W = WiWwp - - - Wph_1Wp

Wnp—1 7Wp—1

/ N W / polynomial size
and
depth 3
bounded fan-in W

\

10/13

The circuit class >,

W = WiWwp - - - Wph_1Wp

Wnp—1 7Wp—1

\ L e T
L NV Z
W

\

It is equivalent to X»[ARB].

polynomial size
and
depth 3

10/13

The case of ¥, (B,Cadilhac, Paperman, Zeume)

,[ARB] N Reg = Y,[REG]

11/13

The case of ¥, (B,Cadilhac, Paperman, Zeume)

,[ARB] N Reg = Y,[REG]

» DO: Immediate.

11/13

The case of ¥, (B,Cadilhac, Paperman, Zeume)

,[ARB] N Reg = Y,[REG]

. Immediate.

2
C: Take a regular language not in X,[REG], show that it is not in X,[ARB].

11/13

The case of ¥, (B,Cadilhac, Paperman, Zeume)

,[ARB] N Reg = Y,[REG]

. Immediate.

2
C: Take a regular language not in X,[REG], show that it is not in X,[ARB].

Algebra

11/13

The case of ¥, (B,Cadilhac, Paperman, Zeume)

,[ARB] N Reg = Y,[REG]

. Immediate.

2
C: Take a regular language not in X,[REG], show that it is not in X,[ARB].

Algebra Circuit lower bound

11/13

Proof sketch

Algebra

Lower bound

12/13

Proof sketch
Theorem (Pin, Weil)

L in ,[REG] iff:

Algebra

Lower bound

12/13

Proof sketch
Theorem (Pin, Weil)

L in ,[REG] iff:

Yuxv € L

vel

Algebra

Lower bound

12/13

Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Yuxv € L such that x can be iterated

U xxxxx veL

Algebra

Lower bound

12/13

Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Yuxv € L such that x can be iterated

vel

Algebra

Lower bound

12/13

Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Algebra

Lower bound

Vuxv € L such that x can be iterated , then uxyxv is also in L for every y with the

same letters as x.

u xyx vecrL

12/13

Proof sketch

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:

» notin L

» that can fool every \/ of bounded fan-in that accepts (at least) A.

Algebra

Lower bound

12/13

Proof sketch Algebra || Lower bound

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥»
circuit.

Proof: One of the A gates must recognize a big subset of L.

12/13

Proof sketch Algebra || Lower bound

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥»
circuit.

Proof: One of the A gates must recognize a big subset of L.

A way of finding limits is via Erdds sunflower lemma (Hastad, Jukna, Pudldk).

12/13

Proof sketch Algebra || Lower bound

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥
circuit.

Proof: One of the A gates must recognize a big subset of L.
A way of finding limits is via Erdds sunflower lemma (Hastad, Jukna, Pudldk).

We give here a new method of finding limits, specially tailored for ¥.

of the form uxyxv

12/13

Conclusion

Also in the paper:

» Straubing's conjecture for A,.

Not in the paper:

» The proof in its full generality.
Future work:

» Go higher in the hierarchy: BY¥,, Y3, .
» Tackle different kind of fragments, like F02

13/13

