The Regular Languages in Circuit Classes

Corentin Barloy
(LL Université
de Lille

Joint work with Michaël Cadilhac, Charles Paperman and Thomas Zeume

Bordeaux 2022

Circuits

Circuits

Circuits

Circuits

Circuits

Circuits

$$
L_{4}=\{1110, \ldots\}
$$

Circuits

$$
L_{4}=\{1110, \ldots\} \quad L=\bigcup_{i \in \mathbb{N}} L_{i}
$$

Circuits

size $=$ number of gates

$$
L_{4}=\{1110, \ldots\} \quad L=\bigcup_{i \in \mathbb{N}} L_{i}
$$

Circuits

$$
\text { size }=\text { number of gates } \quad \text { depth }=\text { maximal length of a path }
$$

$$
L=L=\bigcup_{i \in \mathbb{N}} L_{i}
$$

Circuits

$$
\text { size }=\text { number of gates } \quad \text { depth }=\text { maximal length of a path }
$$

Uniformity $=$ definable in P, LOGSPACE, \ldots

$$
L_{4}=\{1110, \ldots\} \quad L=\bigcup_{i \in \mathbb{N}} L_{i}
$$

Motivations

P

VS
 NP

Motivations

$$
P \subseteq P / \text { poly vs } \quad N P
$$

Motivations

algorithms in P
 with polynomial advice
 $P \subseteq P /$ poly
 vS
 NP

Motivations

algorithms in P
 with polynomial advice
 $\mathrm{P} \subseteq \mathrm{P} /$ poly
 VS
 NP
 circuits with
 polynomially many gates

Motivations

Motivations

algorithms in P

LOGSPACE-uniform circuits with polynomially many gates

Motivations

algorithms in P

LOGSPACE-uniform circuits with polynomially many gates

Shannon: Almost every function requires exponential size.

Motivations

algorithms in P

LOGSPACE-uniform circuits with polynomially many gates

NP

(Close to hardware)

Shannon: Almost every function requires exponential size.

Classes of small circuits

Classes of small circuits

Classes of small circuits

Classes of small circuits

$\underset{\mathrm{M}}{\mathrm{MOD}}$ (number of $1 \equiv_{m} 0$?

Classes of small circuits

$$
\frac{\text { MOD }}{\mathrm{MOD}} \text { : number of } 1 \equiv_{m} 0 ? \quad \underset{\mid \text { MAJ }}{\text { MU }} \text { : number of } 1 \geq \text { number of } 0 ?
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOL}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOL}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOL}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOL}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOD}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOL}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOD}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\mathrm{MA}}: \text { number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\mathrm{MOD}}{\mathrm{MOD}} \text { : number of } 1 \equiv_{m} 0 ? \quad \text { MAJ : number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\text { MOD }}{\mathrm{MOD}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\rho} \text { : number of } 1 \geq \text { number of } 0 \text { ? }
$$

Classes of small circuits

$$
\frac{\text { MOD }}{\mathrm{MOD}} \text { : number of } 1 \equiv_{m} 0 ? \quad \frac{\mathrm{MAJ}}{\rho} \text { : number of } 1 \geq \text { number of } 0 \text { ? }
$$

The case of NC^{1}

Theorem
All regular languages are in NC^{1}.

The case of NC^{1}

Theorem
All regular languages are in NC^{1}.
\mathcal{A} an automaton: finitely many functions $Q \rightarrow Q$

The case of NC^{1}

Theorem
All regular languages are in NC^{1}.
\mathcal{A} an automaton: finitely many functions $Q \rightarrow Q$
Bounded size circuits for:

- Given a letter a, its transition function
- The composition of two functions
- Whether a function maps the initial state to a final state

The case of NC^{1}

Theorem
All regular languages are in NC^{1}.
\mathcal{A} an automaton: finitely many functions $Q \rightarrow Q$
Bounded size circuits for:

- Given a letter a, its transition function
- The composition of two functions
- Whether a function maps the initial state to a final state

Divide and conquer.

Expressing languages with logic
$\{a, b, c\}^{*} a b^{*}$ can be defined with:

$$
\exists x, \forall y, \quad a(x) \wedge(y>x \Rightarrow b(y))
$$

Expressing languages with logic
$\{a, b, c\}^{*} a b^{*}$ can be defined with:

$$
\underbrace{\exists x, \forall y,}_{\begin{array}{c}
\text { one quantifier } \\
\text { alternation }
\end{array}} a(x) \wedge(y>x \Rightarrow b(y))
$$

Expressiveness

Fragments Numerical predicates

Expressiveness

Fragments
Numerical predicates

- First-order logic: FO

Expressiveness

Fragments
Numerical predicates

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}

Expressiveness

Fragments

Numerical predicates

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers, ...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$
- The modular predicates: $x \bmod 3=0$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$
- The modular predicates: $x \bmod 3=0$

Regular predicates: REG

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$
- The modular predicates: $x \bmod 3=0$

Regular predicates: REG

- Many more ($x y=z$, encoding of a cat, ...)

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$

The successor predicate: $x+1=y$
The modular predicates: $x \bmod 3=0$
Regular predicates: REG
Many more ($x y=z$, encoding of a cat, ...)

Arbitrary predicates: ARB

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$

The successor predicate: $x+1=y$ The modular predicates: $x \bmod 3=0$

Regular predicates: REG
Many more ($x y=z$, encoding of a cat, ...)

Arbitrary predicates: ARB

$$
\begin{gathered}
\exists x, \forall y, a(x) \wedge(y>x \Rightarrow b(y)) \\
\in \Sigma_{2}[\operatorname{REG}]
\end{gathered}
$$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$

The successor predicate: $x+1=y$ The modular predicates: $x \bmod 3=0$

Regular predicates: REG
Many more ($x y=z$, encoding of a cat, ...)

Arbitrary predicates: ARB

$$
\begin{gathered}
\exists x, \forall y, a(x) \wedge(y>x \Rightarrow b(y)) \\
\in \Sigma_{2}[R E G]
\end{gathered}
$$

$\forall x$, 䎆 $(x) \Rightarrow a(x)$
$\in \Pi_{1}$ [ARB]

Circuits and formulas

Circuits and formulas

FO[ARB]

Circuits and formulas

$\exists_{q, r}^{\bmod }=\#$ satisfiyng assignements is $\equiv \mathrm{r} \bmod \mathrm{q}$

Circuits and formulas

$\exists_{q, r}^{\bmod }=\#$ satisfiyng assignements is $\equiv \mathrm{r} \bmod \mathrm{q}$
$\exists^{\text {maj }}=$ a majority of the assignements are satisfying

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
$\mathcal{L}[A R B] \cap \operatorname{Reg}=\mathcal{L}[R E G]!$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):

$\mathcal{L}[A R B] \cap \operatorname{Reg}=\mathcal{L}[R E G]!$

True

- Σ_{1}
- FO
- FO with prime modular quantifiers

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?
A natural guess (Straubing):

$$
\mathcal{L}[\mathrm{ARB}] \cap \operatorname{Reg}=\mathcal{L}[\mathrm{REG}]!
$$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?
A natural guess (Straubing):

$$
\mathcal{L}[\mathrm{ARB}] \cap \operatorname{Reg}=\mathcal{L}[\mathrm{REG}]!
$$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):

$$
\mathcal{L}[\mathrm{ARB}] \cap \operatorname{Reg}=\mathcal{L}[\mathrm{REG}]!
$$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
Circuits with

$$
\mathcal{L}[\mathrm{ARB}] \cap \operatorname{Reg}=\mathcal{L}[R E G]!
$$

composite modular gates
(AND $\in \mathrm{CC}_{6}^{0}$?)

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
Circuits with
$\mathcal{L}[A R B] \cap$ Reg $=\mathcal{L}[R E G]!$ composite modular gates
$\left(A N D \in C_{6}^{0} ?\right)$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
Circuits with
$\mathcal{L}[A R B] \cap$ Reg $=\mathcal{L}[R E G]!$ composite modular gates
$\left(A N D \in C_{6}^{0} ?\right)$

The circuit class Σ_{2}

$$
w=w_{1} w_{2} \cdots w_{n-1} w_{n}
$$

The circuit class Σ_{2}

$$
w=w_{1} w_{2} \cdots w_{n-1} w_{n}
$$

The circuit class Σ_{2}

$$
w=w_{1} w_{2} \cdots w_{n-1} w_{n}
$$

It is equivalent to $\Sigma_{2}[A R B]$.

The case of Σ_{2} (B,Cadilhac, Paperman, Zeume)

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$

The case of Σ_{2} (B,Cadilhac, Paperman, Zeume)

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$

- \supseteq : Immediate.

The case of Σ_{2} (B,Cadilhac, Paperman, Zeume)

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$

- \supseteq : Immediate.
- \subseteq : Take a regular language not in $\Sigma_{2}[R E G]$, show that it is not in $\Sigma_{2}[A R B]$.

The case of Σ_{2} (B,Cadilhac, Paperman, Zeume)

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$

- \supseteq : Immediate.
- \subseteq : Take a regular language not in $\Sigma_{2}[R E G]$, show that it is not in $\Sigma_{2}[A R B]$.

Algebra

The case of Σ_{2} (B,Cadilhac, Paperman, Zeume)

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$

- \supseteq : Immediate.
$\bullet \subseteq$: Take a regular language not in $\underbrace{\Sigma_{2}[R E G]}$, show that it is not in $\underbrace{\Sigma_{2}[A R B]}$.
Algebra
Circuit lower bound

Proof sketch

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:
$\forall u x v \in \mathcal{L}$

$$
u \quad x \quad v \in \mathcal{L}
$$

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[$ REG] iff:
$\forall u x v \in \mathcal{L}$ such that x can be iterated

$$
u \quad x X X X X \quad v \in \mathcal{L}
$$

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[$ REG] iff:
$\forall u x v \in \mathcal{L}$ such that x can be iterated

$$
u \quad x \quad v \in \mathcal{L}
$$

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:
$\forall u x v \in \mathcal{L}$ such that x can be iterated, then $u x y x v$ is also in \mathcal{L} for every y with the same letters as x.

$$
u \quad \text { xyx } \quad v \in \mathcal{L}
$$

Proof sketch

Definition (limit (Sipser))
Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proof sketch

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_{2} circuit.
Proof: One of the \wedge gates must recognize a big subset of \mathcal{L}.

Proof sketch

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_{2} circuit.
Proof: One of the \wedge gates must recognize a big subset of \mathcal{L}.
A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

Proof sketch

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_{2} circuit.
Proof: One of the \wedge gates must recognize a big subset of \mathcal{L}.
A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).
We give here a new method of finding limits, $\underbrace{\text { specially tailored for } \Sigma_{2}}$.
of the form $u x y x v$

Conclusion

Also in the paper:

- Straubing's conjecture for Δ_{2}.

Not in the paper:

- The proof in its full generality.

Future work:

- Go higher in the hierarchy: $\mathcal{B} \Sigma_{2}, \Sigma_{3}, \ldots$
- Tackle different kind of fragments, like FO_{2}.

