The Regular Languages of First-Order Logic with One Alternation

Corentin Barloy, Michaël Cadilhac, Charles Paperman, Thomas Zeume

LICS 2022

Expressing languages with logic

 $\{a, b, c\}^*ab^*$ can be defined with:

$$\exists x, \forall y, \ a(x) \land (y > x \Rightarrow b(y))$$

Expressing languages with logic

 $\{a, b, c\}^*ab^*$ can be defined with:

$$\underbrace{\exists x, \forall y,}_{\text{one quantifier alternation}} a(x) \land (y > x \Rightarrow b(y))$$

Fragments

Fragments

► First-order logic: FO

Fragments

First-order logic: FO

► Bounded quantifier alternation: \sum_k , \prod_k

Fragments

- First-order logic: FO
- ▶ Bounded quantifier alternation: Σ_k , Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Fragments

- First-order logic: FO
- ▶ Bounded quantifier alternation: \sum_k , \prod_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

▶ The order: x < y

Fragments

- First-order logic: FO
- ▶ Bounded quantifier alternation: \sum_k , \prod_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

- ▶ The order: x < y
- ▶ The successor predicate: x + 1 = y

Fragments

- ► First-order logic: FO
- ► Bounded quantifier alternation: Σ_k , Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

- ▶ The order: x < y
- ▶ The successor predicate: x + 1 = y
- ▶ The modular predicates: $x \mod 3 = 0$

Fragments

- ► First-order logic: FO
- ▶ Bounded quantifier alternation: \sum_k , \prod_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- ► The order: x < y
- ▶ The successor predicate: x + 1 = y
- ▶ The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Fragments

- ► First-order logic: FO
- ▶ Bounded quantifier alternation: \sum_k , \prod_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: x < y
- ▶ The successor predicate: x + 1 = y
- ▶ The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Many more (xy = z, encoding of a cat, ...)

Fragments

- ► First-order logic: FO
- ► Bounded quantifier alternation: Σ_k , Π_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

The order: x < y

The successor predicate: x + 1 = y

The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Many more (xy = z, encoding of a cat, ...)

Arbitrary predicates: ARB

Fragments

- ► First-order logic: FO
- ▶ Bounded quantifier alternation: \sum_k , \prod_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

The order: x < y

The successor predicate: x + 1 = y

The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Many more (xy = z, encoding of a cat, ...)

Arbitrary predicates: ARB

$$\exists x, \forall y, a(x) \land (y > x \Rightarrow b(y))$$

 $\in \Sigma_2[\mathsf{REG}]$

Fragments

- ► First-order logic: FO
- ▶ Bounded quantifier alternation: \sum_k , \prod_k
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

The order: x < y

The successor predicate: x + 1 = y

The modular predicates: $x \mod 3 = 0$

Regular predicates: REG

Many more (xy = z, encoding of a cat, ...)

Arbitrary predicates: ARB

$$\exists x, \forall y, a(x) \land (y > x \Rightarrow b(y)) \\ \in \frac{\Sigma_2[\mathsf{REG}]}{}$$

$$\forall x, (x \text{ encodes a cat}) \Rightarrow a(x)$$

 $\in \Pi_1[ARB]$

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

$$\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$$

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

$$\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$$

True

- $\triangleright \Sigma_1$
- ► FO
- ► FO with prime modular quantifiers

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

$$\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$$

True

- $\triangleright \Sigma_1$
- **▶** FO
- ► FO with prime modular quantifiers

False

ightharpoonup FO + S_5

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

$$\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}] !$$

True

- $\triangleright \Sigma_1$
- **▶** FO
- ► FO with prime modular quantifiers

False

ightharpoonup FO + S_5

Open

- FO with composite modular quantifiers
- ► FO with two variables
- $\triangleright \Sigma_k, k \geq 3$

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

$$\mathcal{L}[\mathsf{ARB}] \cap \mathsf{Reg} = \mathcal{L}[\mathsf{REG}]$$
!

Circuits with composite modular gates $(\mathsf{AND} \in \mathsf{CC}_6^0 ?)$

True

- $\triangleright \Sigma_1$
- ► FO
- ► FO with prime modular quantifiers

False

► FO + S_5

Open

- ► FO with composite with modular quantifiers
- ► FO with two variables
- \triangleright Σ_k , $k \geq 3$

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

True

- $\triangleright \Sigma_1$
- ► FO
- FO with prime modular quantifiers

False

ightharpoonup FO + S_5

- Open
- ► FO with composite with modular quantifiers
- ► FO with two variables
- $ightharpoonup \Sigma_k, \ k \geq 3$

Linear AC⁰ (complexity of addition)

For \mathcal{L} a fragment,

What are the regular languages of $\mathcal{L}[ARB]$?

A natural guess (Straubing):

- Open ► FO with composite modular quantifiers
- FO with two variables

$$ightharpoonup \Sigma_k$$
, $k \geq 3$

Linear AC⁰ (complexity of addition)

The circuit class Σ_2

The circuit class Σ_2

The circuit class Σ_2

It is equivalent to $\Sigma_2[ARB]$.

$$\textcolor{red}{\Sigma_2}[\mathsf{ARB}] \cap \mathsf{Reg} = \textcolor{red}{\Sigma_2}[\mathsf{REG}] \ .$$

$${\color{red}\Sigma_2[\mathsf{ARB}]} \cap \mathsf{Reg} = {\color{red}\Sigma_2[\mathsf{REG}]} \ .$$

► ⊇: Immediate.

$${\color{red}\Sigma_2[\mathsf{ARB}] \cap \mathsf{Reg} = \color{red}\Sigma_2[\mathsf{REG}]} \ .$$

- ➤ ⊃: Immediate.
- ▶ \subseteq : Take a regular language not in $\Sigma_2[REG]$, show that it is not in $\Sigma_2[ARB]$.

$${\color{red}\Sigma_2[\mathsf{ARB}]} \cap \mathsf{Reg} = {\color{red}\Sigma_2[\mathsf{REG}]} \ .$$

- ► ⊇: Immediate.
- ▶ \subseteq : Take a regular language not in $\Sigma_2[\mathsf{REG}]$, show that it is not in $\Sigma_2[\mathsf{ARB}]$.

Algebra

$${\color{red}\Sigma_2[\mathsf{ARB}] \cap \mathsf{Reg} = \color{red}\Sigma_2[\mathsf{REG}]} \ .$$

- ➤ ⊃: Immediate.
- ▶ \subseteq : Take a regular language not in $\Sigma_2[\mathsf{REG}]$, show that it is not in $\Sigma_2[\mathsf{ARB}]$.

Algebra

Circuit lower bound

Algebra Lower bound

Proof sketch

Theorem (Pin, Weil)

 $\mathcal L$ in $\Sigma_2[\text{REG}]$ iff:

Algebra Lower bound

Theorem (Pin, Weil)

 \mathcal{L} in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L}$

 $u \quad x \quad v \in \mathcal{L}$

Proof sketch

Algebra Lower bound

Theorem (Pin, Weil)

 \mathcal{L} in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L}$ such that x can be iterated

$$u$$
 $xxxxx$ $v \in \mathcal{L}$

Theorem (Pin, Weil)

 \mathcal{L} in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L}$ such that x can be iterated

$$u \quad x \quad v \in \mathcal{L}$$

Proof sketch

Algebra Lower bound

Theorem (Pin, Weil)

 \mathcal{L} in $\Sigma_2[\mathsf{REG}]$ iff:

 $\forall uxv \in \mathcal{L}$ such that x can be iterated , then uxyxv is also in \mathcal{L} for every y with the same letters as x.

$$u$$
 xyx $v \in \mathcal{L}$

Proof sketch

Algebra Lower bound

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} .

A limit for A is a word u:

- ightharpoonup not in \mathcal{L}
- ▶ that can fool every ∨ of bounded fan-in that accepts (at least) A.

Algebra Lower bound

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} .

A limit for A is a word u:

- ightharpoonup not in \mathcal{L}
- ▶ that can fool every ∨ of bounded fan-in that accepts (at least) A.

Proposition

If every subset of $\mathcal L$ big enough admits a limit, then $\mathcal L$ cannot be recognized by a Σ_2 circuit.

Proof: One of the \land gates must recognize a big subset of \mathcal{L} .

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} .

A limit for A is a word u:

- \triangleright not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_2 circuit.

Proof: One of the \wedge gates must recognize a big subset of \mathcal{L} .

A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

Proof sketch

Algebra Lower bound

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L} .

A limit for A is a word u:

- ▶ not in £
- ▶ that can fool every ∨ of bounded fan-in that accepts (at least) A.

Proposition

If every subset of $\mathcal L$ big enough admits a limit, then $\mathcal L$ cannot be recognized by a Σ_2 circuit.

Proof: One of the \wedge gates must recognize a big subset of \mathcal{L} .

A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

We give here a new method of finding limits, specially tailored for Σ_2 .

of the form uxyxv

Conclusion

Also in the paper:

▶ Straubing's conjecture for Δ_2 .

Not in the paper:

► The proof in its full generality.

Future work:

- ▶ Go higher in the hierarchy: $\mathcal{B}\Sigma_2$, Σ_3 , ...
- ► Tackle different kind of fragments, like FO₂.