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The order: x <y
The successor predicate: x+ 1=y

The modular predicates: x mod 3 =0

Regular predicates: REG

Many more (xy = z, encoding of a
cat, ...)

Arbitrary predicates: ARB

Vx, (x encodes a cat) = a(x)
€ My [ARB]
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Vuxv € L such that x can be iterated , then uxyxv is also in L for every y with the

same letters as x.
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Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥
circuit.

Proof: One of the A gates must recognize a big subset of L.
A way of finding limits is via Erdds sunflower lemma (Hastad, Jukna, Pudldk).

We give here a new method of finding limits, specially tailored for ¥.

of the form uxyxv
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Conclusion

Also in the paper:

» Straubing's conjecture for A,.

Not in the paper:

» The proof in its full generality.

Future work:
» Go higher in the hierarchy: BY¥,, Y3, .
» Tackle different kind of fragments, like F02
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