The Regular Languages of First-Order Logic with One Alternation

Corentin Barloy, Michaél Cadilhac, Charles Paperman, Thomas Zeume
DEPAUL
Lu_ Université UNIVERSITY S:T‘VZRSITKT
de Lille BOCHUM

LICS 2022

1/8

Expressing languages with logic

{a, b, c}*ab* can be defined with:

dx,Vy, a(x)A(y >x= b(y))

2/8

Expressing languages with logic

{a, b, c}*ab* can be defined with:

dx,Vy, a(x)A(y >x= b(y))
——’

one quantifier
alternation

2/8

Expressiveness

Fragments

Numerical predicates

3/8

Expressiveness

Fragments

» First-order logic: FO

Numerical predicates

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, I,

Numerical predicates

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

Numerical predicates

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

Numerical predicates

» The order: x <y

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

Numerical predicates

» The order: x <y

» The successor predicate: x + 1=y

3/8

Expressiveness

Fragments Numerical predicates
» First-order logic: FO » The order: x <y
» Bounded quantifier » The successor predicate: x + 1=y
alternation: X, » The modular predicates: x mod 3 =0

» Many more (restricting the
number of variables, adding
modular quantifiers,...)

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

v

Numerical predicates

The order: x <y
The successor predicate: x+ 1=y

The modular predicates: x mod 3 =0

Regular predicates: REG

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

Numerical predicates

» (The order: x <y

v

The successor predicate: x+ 1=y

» |The modular predicates: x mod 3 =0

Regular predicates: REG

» Many more (xy = z, encoding of a
cat, ...)

3/8

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

v

>

Numerical predicates

The order: x <y
The successor predicate: x+ 1=y

The modular predicates: x mod 3 =0

Regular predicates: REG

Many more (xy = z, encoding of a
cat, ...)

Arbitrary predicates: ARB

3/8

Expressiveness

Fragments
» First-order logic: FO >
» Bounded quantifier >
alternation: X, My >
» Many more (restricting the
number of variables, adding >

modular quantifiers,...)

Ix, Yy, a(x) A (y > x = b(y))
€ ¥5[REG]

Numerical predicates

The order: x <y
The successor predicate: x+ 1=y

The modular predicates: x mod 3 =0

Regular predicates: REG

Many more (xy = z, encoding of a
cat, ...)

Arbitrary predicates: ARB

Expressiveness

Fragments

» First-order logic: FO

» Bounded quantifier
alternation: X, My

» Many more (restricting the

number of variables, adding
modular quantifiers,...)

v

Ix, Yy, a(x) A (y > x = b(y))

€ ¥,[REG]

Numerical predicates

The order: x <y
The successor predicate: x+ 1=y

The modular predicates: x mod 3 =0

Regular predicates: REG

Many more (xy = z, encoding of a
cat, ...)

Arbitrary predicates: ARB

Vx, (x encodes a cat) = a(x)
€ My [ARB]

3/8

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

4/8

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

L[ARB] N Reg = L[REG] !

4/8

Central question

For £ a fragment,
What are the regular languages of LIARB] ?

A natural guess (Straubing):
L[ARB] N Reg = L[REG] !

True
> 5,
> FO

» FO with prime
modular quantifiers

4/8

Central question

For £ a fragment,
What are the regular languages of LIARB] ?

A natural guess (Straubing):

L[ARB] N Reg = L[REG] !

True False
> 3 » FO + S5
> FO
» FO with prime

modular quantifiers

4/8

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

L[ARB] N Reg = L[REG] !

True False Open
> 3, > FO + S5 » FO with composite
> FO modular quantifiers
» FO with prime » FO with two variables

modular quantifiers > Y, k>3

4/8

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

Circuits with

LIARB] N Reg = LIREG] | composite modular gates

True False
> >, > FO + S5
> FO

» FO with prime
modular quantifiers

(AND € CC2 ?)

Open
» FO with composite

modular quantifiers
» FO with two variables
> >, k>3

4/8

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):

Circuits with

LIARB] N Reg = LIREG] | composite modular gates

True False
> >, > FO + S5
> FO

» FO with prime
modular quantifiers

(AND € CC2 ?)

Open
» FO with composite

modular quantifiers
» FO with two variables
> >, k>3

Linear AC®
(complexity of addition)

4/8

Central question

For £ a fragment,

What are the regular languages of LIARB] ?

A natural guess (Straubing):
Circuits with

LIARB] N Reg = LIREG] | composite modular gates
(AND € CC2 ?)

True False Open)
> 3, > FO + S5 » FO with composite
> FO modular quantifiers
» FO with prime » FO with two variables

modular quantifiers > Y, k>3

Our result: ¥>[ARB] N Reg = L>[REG] e/ Linear AC°

(complexity of addition)

4/8

The circuit class >,

W = WiWwp - - - Wph_1Wp

Wnp—1 7Wp—1

V/W
N\ WV
N

\

polynomial size
and
depth 3

5/8

The circuit class >,

W = WiWwp - - - Wph_1Wp

Wnp—1 7Wp—1

\ L e T
L NV Z
W

\

polynomial size
and
depth 3

5/8

The circuit class >,

W = WiWwp - - - Wph_1Wp

Wnp—1 7Wp—1

\ L e T
L NV Z
W

\

It is equivalent to X»[ARB].

polynomial size
and
depth 3

5/8

The main result

S,[ARB] N Reg = S,[REG] .

6/8

The main result

» DO: Immediate.

S,[ARB] N Reg = S,[REG] .

6/8

The main result

2
-

S,[ARB] N Reg = S,[REG] .

: Immediate.
. Take a regular language not in X,[REG], show that it is not in X,[ARB].

6/8

The main result

>
> C

S,[ARB] N Reg = S,[REG] .

: Immediate.
. Take a regular language not in X[REG], show that it is not in X,[ARB].

Algebra

6/8

The main result

S,[ARB] N Reg = S,[REG] .

D: Immediate.
» C: Take a regular language not in X5[REG], show that it is not in X,[ARB].

Algebra Circuit lower bound

Proof sketch

Algebra

Lower bound

7/8

Proof sketch
Theorem (Pin, Weil)

L in ,[REG] iff:

Algebra

Lower bound

Proof sketch
Theorem (Pin, Weil)

L in ,[REG] iff:

Yuxv € L

vel

Algebra

Lower bound

Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Yuxv € L such that x can be iterated

U xxxxx veL

Algebra

Lower bound

7/8

Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Yuxv € L such that x can be iterated

vel

Algebra

Lower bound

7/8

Proof sketch
Theorem (Pin, Weil)

L in Y5[REG] iff:

Algebra

Lower bound

Vuxv € L such that x can be iterated , then uxyxv is also in L for every y with the

same letters as x.

u xyx vecrL

7/8

Proof sketch

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:

» notin L

» that can fool every \/ of bounded fan-in that accepts (at least) A.

Algebra

Lower bound

7/8

Proof sketch Algebra || Lower bound

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥»
circuit.

Proof: One of the A gates must recognize a big subset of L.

7/8

Proof sketch Algebra || Lower bound

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥»
circuit.

Proof: One of the A gates must recognize a big subset of L.

A way of finding limits is via Erdds sunflower lemma (Hastad, Jukna, Pudldk).

7/8

Proof sketch Algebra || Lower bound

Definition (limit (Sipser))
Let A be a set of words in L.
A limit for A is a word u:
> not in L
» that can fool every \/ of bounded fan-in that accepts (at least) A.

Proposition
If every subset of L big enough admits a limit, then L cannot be recognized by a ¥
circuit.

Proof: One of the A gates must recognize a big subset of L.
A way of finding limits is via Erdds sunflower lemma (Hastad, Jukna, Pudldk).

We give here a new method of finding limits, specially tailored for ¥.

of the form uxyxv

7/8

Conclusion

Also in the paper:

» Straubing's conjecture for A,.

Not in the paper:

» The proof in its full generality.

Future work:
» Go higher in the hierarchy: BY¥,, Y3, .
» Tackle different kind of fragments, like F02

8/8

