The Regular Languages of First-Order Logic with One Alternation

Corentin Barloy, Michaël Cadilhac, Charles Paperman, Thomas Zeume

LICS 2022

Expressing languages with logic
$\{a, b, c\}^{*} a b^{*}$ can be defined with:

$$
\exists x, \forall y, \quad a(x) \wedge(y>x \Rightarrow b(y))
$$

Expressing languages with logic
$\{a, b, c\}^{*} a b^{*}$ can be defined with:

$$
\underbrace{\exists x, \forall y,}_{\begin{array}{c}
\text { one quantifier } \\
\text { alternation }
\end{array}} a(x) \wedge(y>x \Rightarrow b(y))
$$

Expressiveness

Fragments
Numerical predicates

Expressiveness

Fragments

- First-order logic: FO

Numerical predicates

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}

Numerical predicates

Expressiveness

Fragments
Numerical predicates

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Expressiveness

Fragments
Numerical predicates

- First-order logic: FO
- The order: $x<y$
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$
- The modular predicates: $x \bmod 3=0$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$
- The modular predicates: $x \bmod 3=0$

Regular predicates: REG

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicates

- The order: $x<y$
- The successor predicate: $x+1=y$
- The modular predicates: $x \bmod 3=0$

Regular predicates: REG

- Many more ($x y=z$, encoding of a cat, ...)

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicatesThe order: $x<y$
The successor predicate: $x+1=y$
The modular predicates: x mod $3=0$
Regular predicates: REG
Many more $(x y=z$, encoding of a
cat, $\ldots)$

Arbitrary predicates: ARB

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicatesThe order: $x<y$
The successor predicate: $x+1=y$
The modular predicates: $x \bmod 3=0$
Regular predicates: REG

- Many more ($x y=z$, encoding of a cat, ...)

$$
\begin{gathered}
\exists x, \forall y, a(x) \wedge(y>x \Rightarrow b(y)) \\
\in \Sigma_{2}[\text { REG }]
\end{gathered}
$$

Expressiveness

Fragments

- First-order logic: FO
- Bounded quantifier alternation: Σ_{k}, Π_{k}
- Many more (restricting the number of variables, adding modular quantifiers,...)

Numerical predicatesThe order: $x<y$
The successor predicate: $x+1=y$
The modular predicates: $x \bmod 3=0$
Regular predicates: REG

- Many more ($x y=z$, encoding of a cat, ...)

Arbitrary predicates: ARB

$$
\begin{array}{cc}
\exists x, \forall y, a(x) \wedge(y>x \Rightarrow b(y)) & \forall x,(x \text { encodes a cat }) \Rightarrow a(x) \\
\in \Sigma_{2}[R E G] & \in \Pi_{1}[\mathrm{ARB}]
\end{array}
$$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
$\mathcal{L}[A R B] \cap \operatorname{Reg}=\mathcal{L}[R E G]!$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):

$\mathcal{L}[A R B] \cap \operatorname{Reg}=\mathcal{L}[R E G]!$

True

- Σ_{1}
- FO
- FO with prime modular quantifiers

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):

$$
\mathcal{L}[\mathrm{ARB}] \cap \operatorname{Reg}=\mathcal{L}[R E G]!
$$

True	False
- Σ_{1}	- $\mathrm{FO}+\mathrm{S}_{5}$
- FO	
FO with prime modular quantifiers	

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):

$$
\mathcal{L}[\mathrm{ARB}] \cap \operatorname{Reg}=\mathcal{L}[R E G]!
$$

	True
	False
	Σ_{1}
	FO
	FO with prime
	modular quantifiers

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
Circuits with

$$
\mathcal{L}[A R B] \cap \operatorname{Reg}=\mathcal{L}[R E G]!
$$

composite modular gates
(AND $\in \mathrm{CC}_{6}^{0}$?)

	True
	Σ_{1}
-	FO
	FO with prime
	modular quantifiers

$$
\begin{gathered}
\text { False } \\
\mathrm{FO}+S_{5}
\end{gathered}
$$

Open

- FO with composite \swarrow modular quantifiers
- FO with two variables
- $\Sigma_{k}, k \geq 3$

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
Circuits with
$\mathcal{L}[A R B] \cap \operatorname{Reg}=\mathcal{L}[R E G]!$
composite modular gates
(AND $\in \mathrm{CC}_{6}^{0}$?)

	True
	False
	Σ_{1}
	FO
	FO with prime
	modular quantifiers

Central question

For \mathcal{L} a fragment,
What are the regular languages of $\mathcal{L}[A R B]$?

A natural guess (Straubing):
Circuits with
$\mathcal{L}[A R B] \cap$ Reg $=\mathcal{L}[R E G]!\quad$ composite modular gates
(AND $\in \mathrm{CC}_{6}^{0}$?)

True	False
- Σ_{1}	- $\mathrm{FO}+\mathrm{S}_{5}$
- FO	
FO with prime modular quantifiers	

[^0]
The circuit class Σ_{2}

$$
w=w_{1} w_{2} \cdots w_{n-1} w_{n}
$$

The circuit class Σ_{2}

$$
w=w_{1} w_{2} \cdots w_{n-1} w_{n}
$$

The circuit class Σ_{2}

$$
w=w_{1} w_{2} \cdots w_{n-1} w_{n}
$$

It is equivalent to $\Sigma_{2}[A R B]$.

The main result

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$.

The main result

$\Sigma_{2}[\mathrm{ARB}] \cap \operatorname{Reg}=\Sigma_{2}[\mathrm{REG}]$.

- \supseteq : Immediate.

The main result

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$.

- \supseteq : Immediate.
- \subseteq : Take a regular language not in $\Sigma_{2}[R E G]$, show that it is not in $\Sigma_{2}[A R B]$.

The main result

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$.

- \supseteq : Immediate.
- \subseteq : Take a regular language not in $\Sigma_{2}[R E G]$, show that it is not in $\Sigma_{2}[A R B]$.

Algebra

The main result

$\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[\operatorname{REG}]$.

- \supseteq : Immediate.
- \subseteq : Take a regular language not in $\Sigma_{2}[R E G]$, show that it is not in $\underbrace{\text { in }[A R B]}$.

Algebra
Circuit lower bound

Proof sketch

Algebra Lower bound

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:
$\forall u x v \in \mathcal{L}$

$$
u \quad x \quad v \in \mathcal{L}
$$

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[$ REG] iff:
$\forall u x v \in \mathcal{L}$ such that x can be iterated

$$
u \quad x X X X X \quad v \in \mathcal{L}
$$

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:
$\forall u x v \in \mathcal{L}$ such that x can be iterated

$$
u \quad x \quad v \in \mathcal{L}
$$

Proof sketch

Theorem (Pin, Weil)
\mathcal{L} in $\Sigma_{2}[R E G]$ iff:
$\forall u x v \in \mathcal{L}$ such that x can be iterated, then $u x y x v$ is also in \mathcal{L} for every y with the same letters as x.

$$
u \quad \text { xyx } \quad v \in \mathcal{L}
$$

Proof sketch

Definition (limit (Sipser))
Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proof sketch

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_{2} circuit.

Proof: One of the \wedge gates must recognize a big subset of \mathcal{L}.

Proof sketch

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_{2} circuit.
Proof: One of the \wedge gates must recognize a big subset of \mathcal{L}.
A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).

Proof sketch

Definition (limit (Sipser))

Let A be a set of words in \mathcal{L}.
A limit for A is a word u :

- not in \mathcal{L}
- that can fool every \vee of bounded fan-in that accepts (at least) A.

Proposition

If every subset of \mathcal{L} big enough admits a limit, then \mathcal{L} cannot be recognized by a Σ_{2} circuit.
Proof: One of the \wedge gates must recognize a big subset of \mathcal{L}.
A way of finding limits is via Erdős sunflower lemma (Håstad, Jukna, Pudlák).
We give here a new method of finding limits, $\underbrace{\text { specially tailored for } \Sigma_{2}}$.
of the form $u x y x v$

Conclusion

Also in the paper:

- Straubing's conjecture for Δ_{2}.

Not in the paper:

- The proof in its full generality.

Future work:

- Go higher in the hierarchy: $\mathcal{B} \Sigma_{2}, \Sigma_{3}, \ldots$
- Tackle different kind of fragments, like FO_{2}.

[^0]: Our result: $\Sigma_{2}[A R B] \cap \operatorname{Reg}=\Sigma_{2}[R E G]$

