

Expressing languages with logic

The set of words of the form $a^n b^n$ can be defined with:

$$\exists x, (\forall y, y \leq x \Rightarrow a(y)) \wedge (\forall y, y > x \Rightarrow b(y)) \wedge (\exists z, \text{End}(z) \wedge \text{Half}(x, z))$$

The expressivity of a logic can depends on:

Possible quantification allowed:

- The full first-order logic: FO ,
- Restricting to two variables: FO_2 ,
- Adding modular quantifiers: $\text{FO} + \text{MOD}$,
- Bounded alternation of quantifiers: Σ_k ,
- Many more...

Possible numerical predicates:

- The order: $<$,
- The regular predicates: $+1$,
- The modular predicates: MOD ,
- Any arbitrary predicates: ARB ,
- Many more...

$\left. \begin{array}{l} \text{The order: } <, \\ \text{The regular predicates: } +1, \\ \text{The modular predicates: } \text{MOD}, \\ \text{Any arbitrary predicates: } \text{ARB}, \end{array} \right\} \text{The regular predicates: } \text{REG}.$

Straubing's central conjecture

Let \mathcal{L} be a logic,

$$\mathcal{L}[\text{ARB}] \cap \text{Reg} = \mathcal{L}[\text{REG}] ?$$

The regular languages.

For which logics \mathcal{L} does the regular languages in $\mathcal{L}[\text{ARB}]$ are exactly the languages of $\mathcal{L}[\text{REG}]$?

True

- Σ_1 ,
- FO ,
- $\text{FO} + \text{MOD}(p^k)$, for a fixed prime p .

False

- (the exotic) $\text{FO} + S_5$.

Open

- $\text{FO} + \text{MOD}$,
- FO_2 ,
- Σ_k .

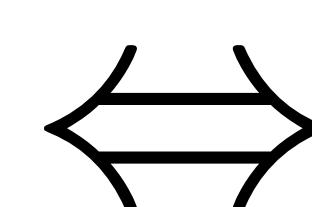
The logic $\Sigma_2[\text{ARB}]$

$$\exists x_1, \dots, x_k \quad \forall y_1, \dots, y_k \quad \varphi(x_1, \dots, y_k)$$

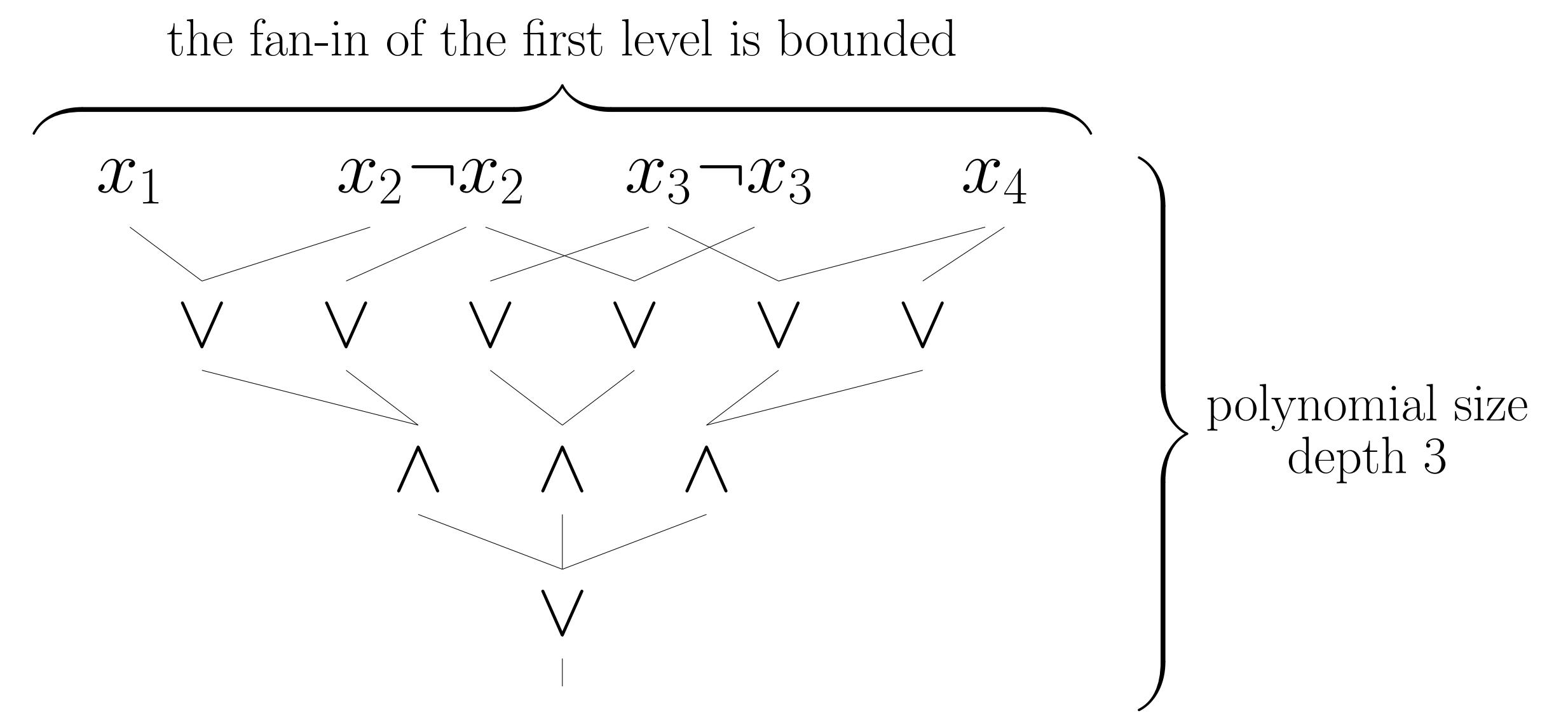
A block of existential quantifiers

A block of universal quantifiers

A formula that can use arbitrary predicates



The circuit class $\exists \forall \exists$



The main result (with Cadilhac, Paperman and Zeume)

$$\Sigma_2[\text{ARB}] \cap \text{Reg} \cap \text{Neut} = \Sigma_2[\text{REG}] \cap \text{Neut} .$$

The two parts of the proof:

- An algebraic characterisation of $\Sigma_2[<]$ (Pin and Weil).
- Lower bounds against $\exists \forall \exists$.

The class of languages with a neutral letter: a mild technical assumption.

A corollary of the proof

The logic Π_2 is defined as Σ_2 but with an initial block of universal quantifiers.

The logic Δ_2 is defined as the class of formulas that can be written both as a Σ_2 formula and as a Π_2 formula.

$$\Delta_2[\text{ARB}] \cap \text{Reg} = \Delta_2[\text{REG}] .$$