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Processing streamed trees

XML encoding of trees:
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Two problems: validation and querying.

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.
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Evaluation in constant memory
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Which RPQs can be evaluated in constant memory?

Theorem (Effective characterisation)

RPQ L can be evaluated in constant memory ⇔ L is (almost) reversible

The minimal automaton is co-deterministic, that is, after reversing the arrows it is
deterministic.

Algorithm:
I When an opening tag is read, follow the transition in the automaton.

I When a closing tag is read, follow the transition in the reverse automaton.
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Limitations of constant memory evaluation

Many queries cannot be evaluated in constant memory.
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They can be evaluated using a stack, but this is costly (memory linear in the depth).
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Stackless queries
(Evaluation in logarithmic memory)
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Stackless automata

Main ingredients: - a finite state machine,
- a counter that stores the current depth in the tree,
- a finite number of registers where the counter values can be stored,
- can compare register values with the current depth.

Evaluating
(a + b + c)∗a(a + b + c)∗b

//a//b

0 1 2

〈a〉
store

C > R

〈b〉
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Effective characterisation of stackless RPQs

Theorem

The RPQ L is stackless ⇔ L is hierarchically (almost) reversible

Each strongly connected component is (almost) reversible:
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When can we validate a document in constant memory?

Validation
Check if the tree conforms to the given schema, modelled as a regular tree language.

Weak validation [Segoufin, Vianu PODS’02]

Assume that the input is a correct encoding of some tree.

Characterize the schemas that can be weakly validated in constant memory.

Segoufin & Vianu solved it for fully recursive DTDs.

We solve it for tree languages of the form: each branch is in language L.

General problem still open, both for constant-memory and our stackless model.
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Conclusion

I Similar characterisations hold for JSON-like encoding, where closing tags carry no
information on the letters.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.
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