
Stackless Processing of Streamed Trees

Corentin Barloy, Filip Murlak, Charles Paperman

PODS 2021

1/10



Processing streamed trees

XML encoding of trees:

c

a

a b

b

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈/b〉

〈/a〉
〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

Two problems: validation and querying.

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.

2/10



Processing streamed trees

XML encoding of trees:

c

a

a b

b

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈/b〉

〈/a〉
〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

Two problems: validation and querying.

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.

2/10



Processing streamed trees

XML encoding of trees:

c

a

a b

b

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈/b〉

〈/a〉
〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

Two problems: validation and querying.

RPQs: the path from the root belongs to a given regular language.

For instance, the RPQ associated to ca∗b.

2/10



Processing streamed trees

XML encoding of trees:

c

a

a bb

bb

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈b〉〈/b〉

〈/a〉
〈b〉〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

Two problems: validation and querying.

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.

b

b
〈b〉

〈b〉

2/10



Evaluation in constant memory

3/10



Which RPQs can be evaluated in constant memory?

Theorem (Effective characterisation)

RPQ L can be evaluated in constant memory ⇔ L is (almost) reversible

The minimal automaton is co-deterministic, that is, after reversing the arrows it is
deterministic.

Algorithm:
I When an opening tag is read, follow the transition in the automaton.

I When a closing tag is read, follow the transition in the reverse automaton.

4/10



Which RPQs can be evaluated in constant memory?

Theorem (Effective characterisation)

RPQ L can be evaluated in constant memory ⇔ L is (almost) reversible

The minimal automaton is co-deterministic, that is, after reversing the arrows it is
deterministic.

Algorithm:
I When an opening tag is read, follow the transition in the automaton.

I When a closing tag is read, follow the transition in the reverse automaton.

4/10



Which RPQs can be evaluated in constant memory?

Theorem (Effective characterisation)

RPQ L can be evaluated in constant memory ⇔ L is (almost) reversible

The minimal automaton is co-deterministic, that is, after reversing the arrows it is
deterministic.

Algorithm:
I When an opening tag is read, follow the transition in the automaton.

I When a closing tag is read, follow the transition in the reverse automaton.

4/10



Limitations of constant memory evaluation

Many queries cannot be evaluated in constant memory.

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c

0

1

2

a

b, c

b

a, c

a, c

b

0

1

2

a

b, c

b

a

c

a

b, c

ab
/a/b

(a+b+ c)∗a(a+b+ c)∗b
//a//b

(a + b + c)∗ab
//a/b

They can be evaluated using a stack, but this is costly (memory linear in the depth).

5/10



Limitations of constant memory evaluation

Many queries cannot be evaluated in constant memory.

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c

0

1

2

a

b, c

b

a, c

a, c

b

0

1

2

a

b, c

b

a

c

a

b, c

ab
/a/b

(a+b+ c)∗a(a+b+ c)∗b
//a//b

(a + b + c)∗ab
//a/b

They can be evaluated using a stack, but this is costly (memory linear in the depth).

5/10



Stackless queries
(Evaluation in logarithmic memory)

6/10



Stackless automata

Main ingredients: - a finite state machine,
- a counter that stores the current depth in the tree,
- a finite number of registers where the counter values can be stored,
- can compare register values with the current depth.

Evaluating
(a + b + c)∗a(a + b + c)∗b

//a//b

0 1 2

〈a〉
store

C > R

〈b〉

7/10



Stackless automata

Main ingredients: - a finite state machine,
- a counter that stores the current depth in the tree,
- a finite number of registers where the counter values can be stored,
- can compare register values with the current depth.

Evaluating
(a + b + c)∗a(a + b + c)∗b

//a//b

0 1 2

〈a〉
store

C > R

〈b〉

7/10



Effective characterisation of stackless RPQs

Theorem

The RPQ L is stackless ⇔ L is hierarchically (almost) reversible

Each strongly connected component is (almost) reversible:

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c

/a/b
is HAR

0

1

2

a

b, c

b

a, c

a, c

b

//a//b
is HAR

0

1

2

a

b, c

b

a

c

a

b, c

//a/b
is not HAR

8/10



Effective characterisation of stackless RPQs

Theorem

The RPQ L is stackless ⇔ L is hierarchically (almost) reversible

Each strongly connected component is (almost) reversible:

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c

/a/b
is HAR

0

1

2

a

b, c

b

a, c

a, c

b

//a//b
is HAR

0

1

2

a

b, c

b

a

c

a

b, c

//a/b
is not HAR

8/10



Effective characterisation of stackless RPQs

Theorem

The RPQ L is stackless ⇔ L is hierarchically (almost) reversible

Each strongly connected component is (almost) reversible:

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c

/a/b
is HAR

0

1

2

a

b, c

b

a, c

a, c

b

//a//b
is HAR

0

1

2

a

b, c

b

a

c

a

b, c

//a/b
is not HAR

8/10



When can we validate a document in constant memory?

Validation
Check if the tree conforms to the given schema, modelled as a regular tree language.

Weak validation [Segoufin, Vianu PODS’02]

Assume that the input is a correct encoding of some tree.

Characterize the schemas that can be weakly validated in constant memory.

Segoufin & Vianu solved it for fully recursive DTDs.

We solve it for tree languages of the form: each branch is in language L.

General problem still open, both for constant-memory and our stackless model.

9/10



When can we validate a document in constant memory?

Validation
Check if the tree conforms to the given schema, modelled as a regular tree language.

Weak validation [Segoufin, Vianu PODS’02]

Assume that the input is a correct encoding of some tree.

Characterize the schemas that can be weakly validated in constant memory.

Segoufin & Vianu solved it for fully recursive DTDs.

We solve it for tree languages of the form: each branch is in language L.

General problem still open, both for constant-memory and our stackless model.

9/10



When can we validate a document in constant memory?

Validation
Check if the tree conforms to the given schema, modelled as a regular tree language.

Weak validation [Segoufin, Vianu PODS’02]

Assume that the input is a correct encoding of some tree.

Characterize the schemas that can be weakly validated in constant memory.

Segoufin & Vianu solved it for fully recursive DTDs.

We solve it for tree languages of the form: each branch is in language L.

General problem still open, both for constant-memory and our stackless model.

9/10



When can we validate a document in constant memory?

Validation
Check if the tree conforms to the given schema, modelled as a regular tree language.

Weak validation [Segoufin, Vianu PODS’02]

Assume that the input is a correct encoding of some tree.

Characterize the schemas that can be weakly validated in constant memory.

Segoufin & Vianu solved it for fully recursive DTDs.

We solve it for tree languages of the form: each branch is in language L.

General problem still open, both for constant-memory and our stackless model.

9/10



Conclusion

I Similar characterisations hold for JSON-like encoding, where closing tags carry no
information on the letters.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.

10/10



Conclusion

I Similar characterisations hold for JSON-like encoding, where closing tags carry no
information on the letters.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.

10/10



Conclusion

I Similar characterisations hold for JSON-like encoding, where closing tags carry no
information on the letters.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.

10/10


