
Stackless Processing of Streamed Trees

Corentin Barloy, Filip Murlak, Charles Paperman

Highlights 2021

1/6



Processing streamed trees

XML encoding of trees:

c

a

a b

b

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈/b〉

〈/a〉
〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.

2/6



Processing streamed trees

XML encoding of trees:

c

a

a b

b

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈/b〉

〈/a〉
〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

RPQs: the path from the root belongs to a given regular language.

For instance, the RPQ associated to ca∗b.

2/6



Processing streamed trees

XML encoding of trees:

c

a

a b

b

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈/b〉

〈/a〉
〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.

2/6



Processing streamed trees

XML encoding of trees:

c

a

a bb

bb

a

〈c〉
〈a〉

〈a〉〈/a〉
〈b〉〈b〉〈/b〉

〈/a〉
〈b〉〈b〉

〈a〉〈/a〉
〈/b〉

〈/c〉

RPQs: the path from the root belongs to a given regular language.
For instance, the RPQ associated to ca∗b.

b

b
〈b〉

〈b〉

2/6



Evaluation in constant memory VS linear memory

I We have an effective characterisation of the RPQs that can be evaluated in
constant memory.

I It is very limited: //a/b and //a//b are not doable.

I All RPQs can be evaluated with a stack, but this is costly.

3/6



Evaluation in constant memory VS linear memory

I We have an effective characterisation of the RPQs that can be evaluated in
constant memory.

I It is very limited: //a/b and //a//b are not doable.

I All RPQs can be evaluated with a stack, but this is costly.

3/6



Evaluation in constant memory VS linear memory

I We have an effective characterisation of the RPQs that can be evaluated in
constant memory.

I It is very limited: //a/b and //a//b are not doable.

I All RPQs can be evaluated with a stack, but this is costly.

3/6



Evaluation in logarithmic memory (Stackless automata)

Main ingredients: - a finite state machine,

- a counter that stores the current depth in the tree,

- a finite number of registers where the counter values can be stored,

- can compare register values with the current depth.

Evaluating:

(a+b+ c)∗a(a+b+ c)∗b

//a//b
0 1 2

〈a〉
store

C > R

〈b〉

4/6



Evaluation in logarithmic memory (Stackless automata)

Main ingredients: - a finite state machine,

- a counter that stores the current depth in the tree,

- a finite number of registers where the counter values can be stored,

- can compare register values with the current depth.

Evaluating:

(a+b+ c)∗a(a+b+ c)∗b

//a//b
0 1 2

〈a〉
store

C > R

〈b〉

4/6



Main result

Theorem

We can decide whether a given RPQ can be evaluated with a stackless automaton

(//a//b is doable but still not //a/b)

5/6



Main result

Theorem

We can decide whether a given RPQ can be evaluated with a stackless automaton

(//a//b is doable but still not //a/b)

5/6



Conclusion

I Similar characterisations for the validation problem.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.

6/6



Conclusion

I Similar characterisations for the validation problem.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.

6/6



Conclusion

I Similar characterisations for the validation problem.

I Ongoing work on leveraging schemas for querying streamed trees.

I Ongoing work on vectorization.

6/6


