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Non-guessing register automata

x is a register that stores values from N

if x = input

if x 6= input

if x 6= input

if x = input

x := input
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The unambiguity property

Unambiguity: there is a most one accepting run for each word.

x := input

x := input
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Decision problems

The universality problem asks whether a given unambiguous register
automaton accepts every word.

Inclusion ⇐⇒ Equivalence ⇐⇒ Universality

This is quite surprising: for DCFG, Universality is decidable but not
Inclusion!
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Main result

Theorem [Mottet, Quaas STACS’19]

The universality problem for unambiguous register automata in decidable
in 2EXP-SPACE.

Theorem [B, Clemente]

The universality problem for unambiguous register automata in decidable
in 2EXP-TIME.

Theorem [Bojańczyk, Klin, Moerman]

The universality problem for unambiguous register automata with
guessing, and over equality or order, is decidable in EXP-TIME.

(Undecidable in general)
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Proof sketch

1 Counting of the number of accepted orbits.

2 Reduction to zeroness of linrec sequence.

3 Modelling using Ore polynomials.

4 Perform elimination.
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1 Counting of the number of accepted orbits.

2 Reduction to zeroness of linrec sequence.

3 Modelling using Ore polynomials.

4 Perform elimination.

orbit(u) = {all renaming of u}

Fs(n, k) =number of orbits of runs that end in s

with length n and with k different letters
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f•(n + 1, k + 1) = 0
f•(n + 1, k + 1) = f•(n, k) + (k + 1) · f•(n, k + 1) + f•(n, k) + k · f•(n, k + 1)
f•(n + 1, k + 1) = f•(n, k) + (k + 1) · f•(n, k + 1) + f•(n, k + 1)
f•(n + 1, k + 1) = f•(n, k + 1) + f•(n, k) + k · f•(n, k + 1)
S(n + 1, k + 1) = S(n, k) + (k + 1) · S(n, k + 1)
g(n + 1, k + 1) = S(n, k)− f•(n, k)
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(∂1∂2) · f• = 0
−∂2 · f• +(∂1∂2 − (k + 1)∂2 − 1) · f• = 0
−∂2 · f• + (∂1∂2 − ∂2) · f• = 0

−∂2 · f• + (−(k − 1)∂2 − 1) · f• +(∂1∂2) · f• = 0
(∂1∂2 − (k + 1)∂2 − 1) · S = 0

∂1∂2g − S + f• = 0
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Proof sketch

1 Counting of the number of accepted orbits.

2 Reduction to zeroness of linrec sequence.

3 Modelling using Ore polynomials.

4 Perform elimination.

((k2 − 5k + 6)∂3
1∂

3
2 + (2k + 2)∂3

1∂
2
2 − 2∂2

1∂2 + ∂2
2 − (3k + 3)) · g = 0
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Proof sketch

1 Counting of the number of accepted orbits.

2 Reduction to zeroness of linrec sequence.

3 Modelling using Ore polynomials.

4 Perform elimination.

Yields a 4-EXP-SPACE algorithm.
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Improving the complexity

Idea: Instead of removing one variable at a time, invert the matrix using
(non-commutative) linear algebra.

Put matrices of operators in a triangular form (Hermite form):(
(∂1 − 1)∂2 −∂2
−k∂2 − 1 ∂1∂2

)
⇒

(
1 ( k

∂1−1 − ∂1)∂2
0 ∂2

2 − 1
∂2
1−∂1−(k+1)

∂2

)

Exponential bound on the coefficient of the Hermite form
[Giesbrecht,Kim 11].
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Main theorem

Theorem [B.,Clemente 20]

The universality problem for unambiguous register automata is decidable
in 2EXP-TIME.
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Conclusion

Improving the complexity. Monicity conjecture: monic cancelling
relations suffice:

((((((((hhhhhhh(k2 − 5k + 6)∂3
1∂

3
2 + (2k + 2)∂3

1∂
2
2 − 2∂2

1∂2 + ∂2
2 − (3k + 3)) · g = 0

This is false for linrec in general, we have to restrict to equations
arising from automata. This would give an EXP-TIME bound.

Extend to other structures: other atoms, timed automata, pushdown
automata. . .

Extend to weighted automata.
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